Spaces:
Sleeping
Sleeping
import json | |
import openai | |
import gradio as gr | |
import duckdb | |
from functools import lru_cache | |
import os | |
# ========================= | |
# Configuration and Setup | |
# ========================= | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path | |
schema = [ | |
{"column_name": "department_ind_agency", "column_type": "VARCHAR"}, | |
{"column_name": "cgac", "column_type": "BIGINT"}, | |
{"column_name": "sub_tier", "column_type": "VARCHAR"}, | |
{"column_name": "fpds_code", "column_type": "VARCHAR"}, | |
{"column_name": "office", "column_type": "VARCHAR"}, | |
{"column_name": "aac_code", "column_type": "VARCHAR"}, | |
{"column_name": "posteddate", "column_type": "VARCHAR"}, | |
{"column_name": "type", "column_type": "VARCHAR"}, | |
{"column_name": "basetype", "column_type": "VARCHAR"}, | |
{"column_name": "popstreetaddress", "column_type": "VARCHAR"}, | |
{"column_name": "popcity", "column_type": "VARCHAR"}, | |
{"column_name": "popstate", "column_type": "VARCHAR"}, | |
{"column_name": "popzip", "column_type": "VARCHAR"}, | |
{"column_name": "popcountry", "column_type": "VARCHAR"}, | |
{"column_name": "active", "column_type": "VARCHAR"}, | |
{"column_name": "awardnumber", "column_type": "VARCHAR"}, | |
{"column_name": "awarddate", "column_type": "VARCHAR"}, | |
{"column_name": "award", "column_type": "DOUBLE"}, | |
{"column_name": "awardee", "column_type": "VARCHAR"}, | |
{"column_name": "state", "column_type": "VARCHAR"}, | |
{"column_name": "city", "column_type": "VARCHAR"}, | |
{"column_name": "zipcode", "column_type": "VARCHAR"}, | |
{"column_name": "countrycode", "column_type": "VARCHAR"} | |
] | |
def get_schema(): | |
return schema | |
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()} | |
# ========================= | |
# OpenAI API Integration | |
# ========================= | |
def parse_query(nl_query): | |
messages = [ | |
{"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."}, | |
{"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"} | |
] | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=messages, | |
temperature=0, | |
max_tokens=150, | |
) | |
sql_query = response.choices[0].message.content.strip() | |
return sql_query, "" | |
except Exception as e: | |
return "", f"Error generating SQL query: {e}" | |
# ========================= | |
# Database Interaction | |
# ========================= | |
def execute_sql_query(sql_query): | |
try: | |
con = duckdb.connect() | |
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'") | |
result_df = con.execute(sql_query).fetchdf() | |
con.close() | |
return result_df, "" | |
except Exception as e: | |
return None, f"Error executing query: {e}" | |
# ========================= | |
# Gradio Application UI | |
# ========================= | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
<h1 style="text-align:center;">Text-to-SQL Contract Data Explorer</h1> | |
<p style="text-align:center; font-size:1.2em;">Analyze US Government contract data using natural language queries.</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=350): | |
gr.Markdown("### π Enter Your Query") | |
query_input = gr.Textbox( | |
label="", | |
placeholder='e.g., "What are the total awards over $1M in California?"', | |
lines=2 | |
) | |
btn_generate_sql = gr.Button("Generate SQL Query") | |
sql_query_out = gr.Code(label="Generated SQL Query", language="sql") | |
btn_execute_query = gr.Button("Execute Query") | |
error_out = gr.Markdown("", visible=False) | |
gr.Markdown("### π‘ Example Queries") | |
example_queries = [ | |
"Show the top 10 departments by total award amount.", | |
"List contracts where the award amount exceeds $5,000,000.", | |
"Retrieve awards over $1M in California.", | |
"Find the top 5 awardees by number of contracts.", | |
"Display contracts awarded after 2020 in New York.", | |
"What is the total award amount by state?" | |
] | |
for i, query in enumerate(example_queries): | |
gr.Button(query, elem_id=f"example_{i}") | |
with gr.Accordion("Dataset Schema", open=False): | |
gr.JSON(get_schema(), label="Schema") | |
with gr.Column(scale=2): | |
gr.Markdown("### π Query Results") | |
results_out = gr.DataFrame(label="", interactive=False) | |
status_info = gr.Markdown("", visible=False) | |
# ========================= | |
# Event Functions | |
# ========================= | |
def generate_sql(nl_query): | |
if not nl_query.strip(): | |
return "", "β οΈ Please enter a natural language query." | |
sql_query, error = parse_query(nl_query) | |
if error: | |
return "", f"β {error}" | |
return sql_query, "" | |
def execute_query(sql_query): | |
if not sql_query.strip(): | |
return None, "β οΈ Please generate an SQL query first." | |
result_df, error = execute_sql_query(sql_query) | |
if error: | |
return None, f"β {error}" | |
if result_df.empty: | |
return None, "βΉοΈ The query returned no results." | |
return result_df, "" | |
def handle_example_click(example_query): | |
query_input.value = example_query | |
sql_query, error = parse_query(example_query) | |
if error: | |
sql_query_out.value = "" | |
error_out.value = f"β {error}" | |
return | |
sql_query_out.value = sql_query | |
result_df, exec_error = execute_sql_query(sql_query) | |
if exec_error: | |
results_out.value = None | |
error_out.value = f"β {exec_error}" | |
return | |
results_out.value = result_df | |
error_out.value = "" | |
# ========================= | |
# Button Click Event Handlers | |
# ========================= | |
btn_generate_sql.click( | |
fn=generate_sql, | |
inputs=query_input, | |
outputs=[sql_query_out, error_out] | |
) | |
btn_execute_query.click( | |
fn=execute_query, | |
inputs=sql_query_out, | |
outputs=[results_out, error_out] | |
) | |
for i, query in enumerate(example_queries): | |
gr.get_component(f"example_{i}").click( | |
fn=lambda q=query: handle_example_click(q), | |
outputs=[] | |
) | |
# Launch the Gradio App | |
demo.queue().launch() | |