LeonceNsh's picture
Update app.py
12e11fb verified
raw
history blame
6.78 kB
import json
import openai
import gradio as gr
import duckdb
from functools import lru_cache
import os
# =========================
# Configuration and Setup
# =========================
openai.api_key = os.getenv("OPENAI_API_KEY")
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
schema = [
{"column_name": "department_ind_agency", "column_type": "VARCHAR"},
{"column_name": "cgac", "column_type": "BIGINT"},
{"column_name": "sub_tier", "column_type": "VARCHAR"},
{"column_name": "fpds_code", "column_type": "VARCHAR"},
{"column_name": "office", "column_type": "VARCHAR"},
{"column_name": "aac_code", "column_type": "VARCHAR"},
{"column_name": "posteddate", "column_type": "VARCHAR"},
{"column_name": "type", "column_type": "VARCHAR"},
{"column_name": "basetype", "column_type": "VARCHAR"},
{"column_name": "popstreetaddress", "column_type": "VARCHAR"},
{"column_name": "popcity", "column_type": "VARCHAR"},
{"column_name": "popstate", "column_type": "VARCHAR"},
{"column_name": "popzip", "column_type": "VARCHAR"},
{"column_name": "popcountry", "column_type": "VARCHAR"},
{"column_name": "active", "column_type": "VARCHAR"},
{"column_name": "awardnumber", "column_type": "VARCHAR"},
{"column_name": "awarddate", "column_type": "VARCHAR"},
{"column_name": "award", "column_type": "DOUBLE"},
{"column_name": "awardee", "column_type": "VARCHAR"},
{"column_name": "state", "column_type": "VARCHAR"},
{"column_name": "city", "column_type": "VARCHAR"},
{"column_name": "zipcode", "column_type": "VARCHAR"},
{"column_name": "countrycode", "column_type": "VARCHAR"}
]
@lru_cache(maxsize=1)
def get_schema():
return schema
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
# =========================
# OpenAI API Integration
# =========================
def parse_query(nl_query):
messages = [
{"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."},
{"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
]
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=messages,
temperature=0,
max_tokens=150,
)
sql_query = response.choices[0].message.content.strip()
return sql_query, ""
except Exception as e:
return "", f"Error generating SQL query: {e}"
# =========================
# Database Interaction
# =========================
def execute_sql_query(sql_query):
try:
con = duckdb.connect()
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
result_df = con.execute(sql_query).fetchdf()
con.close()
return result_df, ""
except Exception as e:
return None, f"Error executing query: {e}"
# =========================
# Gradio Application UI
# =========================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style="text-align:center;">Text-to-SQL Contract Data Explorer</h1>
<p style="text-align:center; font-size:1.2em;">Analyze US Government contract data using natural language queries.</p>
""")
with gr.Row():
with gr.Column(scale=1, min_width=350):
gr.Markdown("### πŸ” Enter Your Query")
query_input = gr.Textbox(
label="",
placeholder='e.g., "What are the total awards over $1M in California?"',
lines=2
)
btn_generate_sql = gr.Button("Generate SQL Query")
sql_query_out = gr.Code(label="Generated SQL Query", language="sql")
btn_execute_query = gr.Button("Execute Query")
error_out = gr.Markdown("", visible=False)
gr.Markdown("### πŸ’‘ Example Queries")
example_queries = [
"Show the top 10 departments by total award amount.",
"List contracts where the award amount exceeds $5,000,000.",
"Retrieve awards over $1M in California.",
"Find the top 5 awardees by number of contracts.",
"Display contracts awarded after 2020 in New York.",
"What is the total award amount by state?"
]
for i, query in enumerate(example_queries):
gr.Button(query, elem_id=f"example_{i}")
with gr.Accordion("Dataset Schema", open=False):
gr.JSON(get_schema(), label="Schema")
with gr.Column(scale=2):
gr.Markdown("### πŸ“Š Query Results")
results_out = gr.DataFrame(label="", interactive=False)
status_info = gr.Markdown("", visible=False)
# =========================
# Event Functions
# =========================
def generate_sql(nl_query):
if not nl_query.strip():
return "", "⚠️ Please enter a natural language query."
sql_query, error = parse_query(nl_query)
if error:
return "", f"❌ {error}"
return sql_query, ""
def execute_query(sql_query):
if not sql_query.strip():
return None, "⚠️ Please generate an SQL query first."
result_df, error = execute_sql_query(sql_query)
if error:
return None, f"❌ {error}"
if result_df.empty:
return None, "ℹ️ The query returned no results."
return result_df, ""
def handle_example_click(example_query):
query_input.value = example_query
sql_query, error = parse_query(example_query)
if error:
sql_query_out.value = ""
error_out.value = f"❌ {error}"
return
sql_query_out.value = sql_query
result_df, exec_error = execute_sql_query(sql_query)
if exec_error:
results_out.value = None
error_out.value = f"❌ {exec_error}"
return
results_out.value = result_df
error_out.value = ""
# =========================
# Button Click Event Handlers
# =========================
btn_generate_sql.click(
fn=generate_sql,
inputs=query_input,
outputs=[sql_query_out, error_out]
)
btn_execute_query.click(
fn=execute_query,
inputs=sql_query_out,
outputs=[results_out, error_out]
)
for i, query in enumerate(example_queries):
gr.get_component(f"example_{i}").click(
fn=lambda q=query: handle_example_click(q),
outputs=[]
)
# Launch the Gradio App
demo.queue().launch()