File size: 6,780 Bytes
b474ae1
ec9d21a
06f01b3
b474ae1
d33fe62
1fa796c
5b4c268
ae610aa
 
 
 
94bf8f1
f146007
5b4c268
d33fe62
5a73339
 
92494e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33fe62
 
 
 
 
 
04fd164
 
ae610aa
 
 
 
c490b83
a1792a1
94bf8f1
88c83f6
a1792a1
1fa796c
dfe1769
281c128
2cc33e1
13f0f94
88c83f6
dfe1769
 
238955b
04fd164
dfe1769
04fd164
dfe1769
b89b3ba
 
 
 
 
 
 
 
 
 
 
 
 
dfe1769
ae610aa
 
 
 
12e11fb
 
 
 
 
 
281c128
12e11fb
 
efc74be
12e11fb
 
281c128
efc74be
 
12e11fb
 
281c128
12e11fb
 
 
 
 
 
 
 
 
 
 
 
 
 
281c128
12e11fb
 
281c128
b89b3ba
12e11fb
 
 
00c05fa
94bf8f1
f5a9d48
94bf8f1
dfe1769
04fd164
281c128
12e11fb
04fd164
281c128
12e11fb
 
94bf8f1
04fd164
281c128
12e11fb
04fd164
281c128
12e11fb
 
 
281c128
04fd164
12e11fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27620c
04fd164
 
 
c27620c
04fd164
 
 
12e11fb
04fd164
 
 
 
 
12e11fb
774e93a
a28e161
12e11fb
 
 
 
 
c27620c
12e11fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json
import openai
import gradio as gr
import duckdb
from functools import lru_cache
import os

# =========================
# Configuration and Setup
# =========================

openai.api_key = os.getenv("OPENAI_API_KEY")
dataset_path = 'sample_contract_df.parquet'  # Update with your Parquet file path

schema = [
    {"column_name": "department_ind_agency", "column_type": "VARCHAR"},
    {"column_name": "cgac", "column_type": "BIGINT"},
    {"column_name": "sub_tier", "column_type": "VARCHAR"},
    {"column_name": "fpds_code", "column_type": "VARCHAR"},
    {"column_name": "office", "column_type": "VARCHAR"},
    {"column_name": "aac_code", "column_type": "VARCHAR"},
    {"column_name": "posteddate", "column_type": "VARCHAR"},
    {"column_name": "type", "column_type": "VARCHAR"},
    {"column_name": "basetype", "column_type": "VARCHAR"},
    {"column_name": "popstreetaddress", "column_type": "VARCHAR"},
    {"column_name": "popcity", "column_type": "VARCHAR"},
    {"column_name": "popstate", "column_type": "VARCHAR"},
    {"column_name": "popzip", "column_type": "VARCHAR"},
    {"column_name": "popcountry", "column_type": "VARCHAR"},
    {"column_name": "active", "column_type": "VARCHAR"},
    {"column_name": "awardnumber", "column_type": "VARCHAR"},
    {"column_name": "awarddate", "column_type": "VARCHAR"},
    {"column_name": "award", "column_type": "DOUBLE"},
    {"column_name": "awardee", "column_type": "VARCHAR"},
    {"column_name": "state", "column_type": "VARCHAR"},
    {"column_name": "city", "column_type": "VARCHAR"},
    {"column_name": "zipcode", "column_type": "VARCHAR"},
    {"column_name": "countrycode", "column_type": "VARCHAR"}
]

@lru_cache(maxsize=1)
def get_schema():
    return schema

COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}

# =========================
# OpenAI API Integration
# =========================

def parse_query(nl_query):
    messages = [
        {"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."},
        {"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
    ]

    try:
        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=messages,
            temperature=0,
            max_tokens=150,
        )
        sql_query = response.choices[0].message.content.strip()
        return sql_query, ""
    except Exception as e:
        return "", f"Error generating SQL query: {e}"

# =========================
# Database Interaction
# =========================

def execute_sql_query(sql_query):
    try:
        con = duckdb.connect()
        con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
        result_df = con.execute(sql_query).fetchdf()
        con.close()
        return result_df, ""
    except Exception as e:
        return None, f"Error executing query: {e}"

# =========================
# Gradio Application UI
# =========================

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 style="text-align:center;">Text-to-SQL Contract Data Explorer</h1>
    <p style="text-align:center; font-size:1.2em;">Analyze US Government contract data using natural language queries.</p>
    """)
    
    with gr.Row():
        with gr.Column(scale=1, min_width=350):
            gr.Markdown("### πŸ” Enter Your Query")
            query_input = gr.Textbox(
                label="",
                placeholder='e.g., "What are the total awards over $1M in California?"',
                lines=2
            )

            btn_generate_sql = gr.Button("Generate SQL Query")
            sql_query_out = gr.Code(label="Generated SQL Query", language="sql")

            btn_execute_query = gr.Button("Execute Query")
            error_out = gr.Markdown("", visible=False)
            
            gr.Markdown("### πŸ’‘ Example Queries")
            example_queries = [
                "Show the top 10 departments by total award amount.",
                "List contracts where the award amount exceeds $5,000,000.",
                "Retrieve awards over $1M in California.",
                "Find the top 5 awardees by number of contracts.",
                "Display contracts awarded after 2020 in New York.",
                "What is the total award amount by state?"
            ]
            for i, query in enumerate(example_queries):
                gr.Button(query, elem_id=f"example_{i}")

            with gr.Accordion("Dataset Schema", open=False):
                gr.JSON(get_schema(), label="Schema")

        with gr.Column(scale=2):
            gr.Markdown("### πŸ“Š Query Results")
            results_out = gr.DataFrame(label="", interactive=False)
            status_info = gr.Markdown("", visible=False)

    # =========================
    # Event Functions
    # =========================

    def generate_sql(nl_query):
        if not nl_query.strip():
            return "", "⚠️ Please enter a natural language query."
        sql_query, error = parse_query(nl_query)
        if error:
            return "", f"❌ {error}"
        return sql_query, ""

    def execute_query(sql_query):
        if not sql_query.strip():
            return None, "⚠️ Please generate an SQL query first."
        result_df, error = execute_sql_query(sql_query)
        if error:
            return None, f"❌ {error}"
        if result_df.empty:
            return None, "ℹ️ The query returned no results."
        return result_df, ""

    def handle_example_click(example_query):
        query_input.value = example_query
        sql_query, error = parse_query(example_query)
        if error:
            sql_query_out.value = ""
            error_out.value = f"❌ {error}"
            return
        sql_query_out.value = sql_query
        result_df, exec_error = execute_sql_query(sql_query)
        if exec_error:
            results_out.value = None
            error_out.value = f"❌ {exec_error}"
            return
        results_out.value = result_df
        error_out.value = ""

    # =========================
    # Button Click Event Handlers
    # =========================

    btn_generate_sql.click(
        fn=generate_sql,
        inputs=query_input,
        outputs=[sql_query_out, error_out]
    )

    btn_execute_query.click(
        fn=execute_query,
        inputs=sql_query_out,
        outputs=[results_out, error_out]
    )

    for i, query in enumerate(example_queries):
        gr.get_component(f"example_{i}").click(
            fn=lambda q=query: handle_example_click(q),
            outputs=[]
        )

# Launch the Gradio App
demo.queue().launch()