Spaces:
Sleeping
Sleeping
import json | |
import openai | |
import gradio as gr | |
import duckdb | |
from functools import lru_cache | |
import pandas as pd | |
import plotly.express as px | |
import os | |
# ========================= | |
# Configuration and Setup | |
# ========================= | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path | |
schema = [ | |
{"column_name": "department_ind_agency", "column_type": "VARCHAR"}, | |
{"column_name": "cgac", "column_type": "BIGINT"}, | |
{"column_name": "sub_tier", "column_type": "VARCHAR"}, | |
{"column_name": "fpds_code", "column_type": "VARCHAR"}, | |
{"column_name": "office", "column_type": "VARCHAR"}, | |
{"column_name": "aac_code", "column_type": "VARCHAR"}, | |
{"column_name": "posteddate", "column_type": "VARCHAR"}, | |
{"column_name": "type", "column_type": "VARCHAR"}, | |
{"column_name": "basetype", "column_type": "VARCHAR"}, | |
{"column_name": "popstreetaddress", "column_type": "VARCHAR"}, | |
{"column_name": "popcity", "column_type": "VARCHAR"}, | |
{"column_name": "popstate", "column_type": "VARCHAR"}, | |
{"column_name": "popzip", "column_type": "VARCHAR"}, | |
{"column_name": "popcountry", "column_type": "VARCHAR"}, | |
{"column_name": "active", "column_type": "VARCHAR"}, | |
{"column_name": "awardnumber", "column_type": "VARCHAR"}, | |
{"column_name": "awarddate", "column_type": "VARCHAR"}, | |
{"column_name": "award", "column_type": "DOUBLE"}, | |
{"column_name": "awardee", "column_type": "VARCHAR"}, | |
{"column_name": "state", "column_type": "VARCHAR"}, | |
{"column_name": "city", "column_type": "VARCHAR"}, | |
{"column_name": "zipcode", "column_type": "VARCHAR"}, | |
{"column_name": "countrycode", "column_type": "VARCHAR"} | |
] | |
def get_schema(): | |
return schema | |
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()} | |
# ========================= | |
# Database Interaction | |
# ========================= | |
def load_dataset_schema(): | |
con = duckdb.connect() | |
try: | |
con.execute("DROP VIEW IF EXISTS contract_data") | |
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'") | |
return True | |
except Exception as e: | |
print(f"Error loading dataset schema: {e}") | |
return False | |
finally: | |
con.close() | |
# ========================= | |
# OpenAI API Integration | |
# ========================= | |
def parse_query(nl_query): | |
messages = [ | |
{"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."}, | |
{"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"} | |
] | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=messages, | |
temperature=0, | |
max_tokens=150, | |
) | |
sql_query = response.choices[0].message['content'].strip() | |
return sql_query | |
except Exception as e: | |
return f"Error generating SQL query: {e}" | |
def detect_plot_intent(nl_query): | |
plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize'] | |
return any(keyword in nl_query.lower() for keyword in plot_keywords) | |
# ========================= | |
# Gradio Application UI | |
# ========================= | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Parquet SQL Query and Plotting App | |
**Query and visualize data** in `sample_contract_df.parquet` | |
## Instructions | |
1. **Describe the data you want**: e.g., `Show awards over 1M in CA` | |
2. **Use Example Queries**: Click on any example query button below to execute. | |
3. **Generate SQL**: Or, enter your own query and click "Generate SQL" to see the SQL query. | |
4. **Execute Query**: Run the query to view results and plots. | |
5. **Dataset Schema**: See available columns and types in the "Schema" tab. | |
## Example Queries | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
query = gr.Textbox( | |
label="Your Query", | |
placeholder='e.g., "What are the total awards over 1M in California?"', | |
lines=1 | |
) | |
# Button to generate the SQL query from NL | |
btn_generate_sql = gr.Button("Generate SQL Query") | |
# Textbox to display generated SQL | |
sql_query_out = gr.Textbox(label="Generated SQL Query", interactive=False) | |
# Execute button | |
btn_execute_query = gr.Button("Execute Query") | |
error_out = gr.Markdown("", visible=False) | |
# Results and Plot output | |
results_out = gr.DataFrame(label="Query Results") | |
plot_out = gr.Plot(label="Plot") | |
# ========================= | |
# Event Functions | |
# ========================= | |
def generate_sql(nl_query): | |
sql_query = parse_query(nl_query) | |
return sql_query | |
def execute_sql_query(sql_query): | |
try: | |
con = duckdb.connect() | |
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'") | |
result_df = con.execute(sql_query).fetchdf() | |
con.close() | |
return result_df, "" | |
except Exception as e: | |
return None, f"Error executing query: {e}" | |
# Button click event handlers | |
btn_generate_sql.click(fn=generate_sql, inputs=query, outputs=sql_query_out) | |
btn_execute_query.click(fn=execute_sql_query, inputs=sql_query_out, outputs=[results_out, error_out]) | |
# Launch the Gradio App | |
demo.launch() | |