Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,739 Bytes
d72c37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import math
import numpy as np
from omegaconf import OmegaConf
from pathlib import Path
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from torchvision.utils import save_image
from torchvision.ops import masks_to_boxes
from torchvision.transforms import Resize
from diffusers import DDIMScheduler, DDPMScheduler
from einops import rearrange, repeat
from tqdm import tqdm
import sys
from os import path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
sys.path.append("./models/")
from loguru import logger
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.diffusionmodules.util import extract_into_tensor
# load model
def load_model_from_config(config, ckpt, device, vram_O=False, verbose=True):
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd and verbose:
logger.info(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0:
logger.warning('missing keys: \n', m)
if len(u) > 0:
logger.warning('unexpected keys: \n', u)
# manually load ema and delete it to save GPU memory
if model.use_ema:
logger.debug('loading EMA...')
model.model_ema.copy_to(model.model)
del model.model_ema
if vram_O:
# we don't need decoder
del model.first_stage_model.decoder
torch.cuda.empty_cache()
model.eval().to(device)
# model.first_stage_model.train = True
# model.first_stage_model.train()
for param in model.first_stage_model.parameters():
param.requires_grad = True
return model
class MateralDiffusion(nn.Module):
def __init__(self, device, fp16,
config=None,
ckpt=None, vram_O=False, t_range=[0.02, 0.98], opt=None, use_ddim=True):
super().__init__()
self.device = device
self.fp16 = fp16
self.vram_O = vram_O
self.t_range = t_range
self.opt = opt
self.config = OmegaConf.load(config)
# TODO: seems it cannot load into fp16...
self.model = load_model_from_config(self.config, ckpt, device=self.device, vram_O=vram_O, verbose=True)
# timesteps: use diffuser for convenience... hope it's alright.
self.num_train_timesteps = self.config.model.params.timesteps
self.use_ddim = use_ddim
if self.use_ddim:
self.scheduler = DDIMScheduler(
self.num_train_timesteps,
self.config.model.params.linear_start,
self.config.model.params.linear_end,
beta_schedule='scaled_linear',
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
print("Using DDIM...")
else:
self.scheduler = DDPMScheduler(
self.num_train_timesteps,
self.config.model.params.linear_start,
self.config.model.params.linear_end,
beta_schedule='scaled_linear',
clip_sample=False,
)
print("Using DDPM...")
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
def get_input(self, x):
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
return x
def center_crop(self, img, mask, return_uv=False, mask_ratio=.8, image_size=256):
margin = np.round((1 - mask_ratio) * image_size).astype(int)
resizer = Resize([np.round(image_size-margin*2).astype(int),
np.round(image_size-margin*2).astype(int)])
# img ~ batch, h, w, 3
# mask ~ batch, h, w, 3
# ensure border is 0, as grid sampler only support border or zeros padding
# But we need the one padding
batch_size = img.shape[0]
min_max_uv = masks_to_boxes(mask[..., -1] > 0.5)
min_uv, max_uv = min_max_uv[..., [1,0]].long(), (min_max_uv[..., [3,2]] + 1).long()
# fill back ground to ones
img = (img + (mask[..., -1:] <= 0.5)).clamp(0, 1)
img = rearrange(img, 'b h w c -> b c h w')
ori_size = torch.tensor(img.shape[-2:]).to(min_max_uv.device).reshape(1, 2).expand(img.shape[0], -1)
crooped_imgs = []
for batch_idx in range(batch_size):
# print(min_uv, max_uv, margin)
img_crop = img[batch_idx][:, min_uv[batch_idx, 0]:max_uv[batch_idx, 0],
min_uv[batch_idx,1]:max_uv[batch_idx, 1]]
img_crop = resizer(img_crop)
img_out = torch.ones(3, image_size, image_size).to(img.device)
img_out[:, margin:image_size-margin, margin:image_size-margin] = img_crop
crooped_imgs.append(img_out)
img_new = torch.stack(crooped_imgs, dim=0)
img_new = rearrange(img_new, 'b c h w -> b h w c')
crop_uv = torch.stack([ori_size[:, 0], ori_size[:, 1], min_uv[:, 0], min_uv[:, 1], max_uv[:, 0], max_uv[:, 1], max_uv[:, 1]*0+margin], dim=-1).float()
if return_uv:
return img_new, crop_uv
return img_new
def center_crop_aspect_ratio(self, img, mask, return_uv=False, mask_ratio=.8, image_size=256):
# img ~ batch, h, w, 3
# mask ~ batch, h, w, 3
# ensure border is 0, as grid sampler only support border or zeros padding
# But we need the one padding
boarder_mask = torch.zeros_like(mask)
boarder_mask[:, 1:-1, 1:-1] = 1
mask = mask * boarder_mask
# print(f"mask: {mask.shape}, {(mask[..., -1] > 0.5).sum}")
min_max_uv = masks_to_boxes(mask[..., -1] > 0.5)
min_uv, max_uv = min_max_uv[..., [1,0]], min_max_uv[..., [3,2]]
# fill back ground to ones
img = (img + (mask[..., -1:] <= 0.5)).clamp(0, 1)
img = rearrange(img, 'b h w c -> b c h w')
ori_size = torch.tensor(img.shape[-2:]).to(min_max_uv.device).reshape(1, 2).expand(img.shape[0], -1)
crop_length = torch.div((max_uv - min_uv), 2, rounding_mode='floor')
half_size = torch.max(crop_length, dim=-1, keepdim=True)[0]
center_uv = min_uv + crop_length
# generate grid
target_size = image_size
grid_x, grid_y = torch.meshgrid(torch.arange(0, target_size, 1, device=min_max_uv.device), \
torch.arange(0, target_size, 1, device=min_max_uv.device), \
indexing='ij')
normalized_xy = torch.stack([(grid_x) / (target_size - 1), grid_y / (target_size - 1)], dim=-1) # [0,1]
normalized_xy = (normalized_xy - 0.5) / mask_ratio + 0.5
normalized_xy = normalized_xy[None].expand(img.shape[0], -1, -1, -1)
ori_crop_size = 2 * half_size + 1
xy_scale = (ori_crop_size-1) / (ori_size - 1)
normalized_xy = normalized_xy * xy_scale.reshape(-1, 1, 1, 2)[..., [0,1]]
xy_shift = (center_uv - half_size) / (ori_size - 1)
normalized_xy = normalized_xy + xy_shift.reshape(-1, 1, 1, 2)[..., [0,1]]
normalized_xy = normalized_xy * 2 - 1 # [-1,1]
# normalized_xy = normalized_xy / mask_ratio
img_new = F.grid_sample(img, normalized_xy[..., [1,0]], padding_mode='border', align_corners=True)
crop_uv = torch.stack([ori_size[:, 0], ori_size[:, 1], half_size[..., 0]*0.0 + mask_ratio, half_size[..., 0], center_uv[:, 0], center_uv[:, 1]], dim=-1).float()
img_new = rearrange(img_new, 'b c h w -> b h w c')
if return_uv:
return img_new, crop_uv
return img_new
def restore_crop(self, img, img_ori, crop_idx):
ori_size, min_uv, max_uv, margin = crop_idx[:, :2].long(), crop_idx[:, 2:4].long(), crop_idx[:, 4:6].long(), crop_idx[0, 6].long().item()
batch_size = img.shape[0]
all_images = []
for batch_idx in range(batch_size):
img_out = torch.ones(3, ori_size[batch_idx][0], ori_size[batch_idx][1]).to(img.device)
cropped_size = max_uv[batch_idx] - min_uv[batch_idx]
resizer = Resize([cropped_size[0], cropped_size[1]])
net_size = img[batch_idx].shape[-1]
img_crop = resizer(img[batch_idx][:, margin:net_size-margin, margin:net_size-margin])
img_out[:, min_uv[batch_idx, 0]:max_uv[batch_idx, 0],
min_uv[batch_idx,1]:max_uv[batch_idx, 1]] = img_crop
all_images.append(img_out)
all_images = torch.stack(all_images, dim=0)
all_images = rearrange(all_images, 'b c h w -> b h w c')
return all_images
def restore_crop_aspect_ratio(self, img, img_ori, crop_idx):
ori_size, mask_ratio, half_size, center_uv = crop_idx[:, :2].long(), crop_idx[:, 2:3], crop_idx[:, 3:4].long(), crop_idx[:, 4:].long()
img[:, :, 0, :] = 1
img[:, :, -1, :] = 1
img[:, :, :, 0] = 1
img[:, :, :, -1] = 1
ori_crop_size = 2*half_size + 1
grid_x, grid_y = torch.meshgrid(torch.arange(0, ori_size[0, 0].item(), 1, device=img.device), \
torch.arange(0, ori_size[0, 1].item(), 1, device=img.device), \
indexing='ij')
normalized_xy = torch.stack([grid_x, grid_y], dim=-1)[None].expand(img.shape[0], -1, -1, -1) - \
(center_uv - half_size).reshape(-1, 1, 1, 2)[..., [0,1]]
normalized_xy = normalized_xy / (ori_crop_size-1).reshape(-1, 1, 1, 1)
normalized_xy = (2*normalized_xy - 1) * mask_ratio.reshape(-1, 1, 1, 1)
sample_start = (center_uv - half_size)
# print(normalized_xy[0][sample_start[0][0], sample_start[0][1]], mask_ratio)
img_out = F.grid_sample(img, normalized_xy[..., [1,0]], padding_mode='border', align_corners=True)
img_out = rearrange(img_out, 'b c h w -> b h w c')
return img_out
def _image2diffusion(self, embeddings, pred_rgb, mask, image_size=256):
# pred_rgb: tensor [1, 3, H, W] in [0, 1]
# assert pred_rgb.w
assert len(pred_rgb.shape) == 4, f"except 4 dim tensor, got: {pred_rgb.shape}"
cond_img = embeddings["cond_img"]
cond_img = self.center_crop(cond_img, mask, mask_ratio=1.0, image_size=image_size)
pred_rgb_256, crop_idx_all = self.center_crop(pred_rgb, mask, return_uv=True, mask_ratio=1.0, image_size=image_size)
# print(f"pred_rgb_256: {pred_rgb_256.min()} {pred_rgb_256.max()} {pred_rgb_256.shape} {cond_img.shape}")
mask_img = self.center_crop(1 - mask.expand(-1, -1, -1, 3), mask, mask_ratio=1.0, image_size=image_size)
xc = self.get_input(cond_img)
pred_rgb_256 = self.get_input(pred_rgb_256)
return pred_rgb_256, crop_idx_all, xc
def _get_condition(self, xc, with_uncondition=False):
# To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
# z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768]
# print('=========== xc shape ===========', xc.shape)
# print(xc.shape, xc.min(), xc.max(), self.model.use_clip_embdding)
xc = xc * 2 - 1
cond = {}
clip_emb = self.model.get_learned_conditioning(xc if self.model.use_clip_embdding else [""]).detach()
c_concat = self.model.encode_first_stage((xc.to(self.device))).mode().detach()
# print(clip_emb.shape, clip_emb.min(), clip_emb.max(), self.model.use_clip_embdding)
if with_uncondition:
cond['c_crossattn'] = [torch.cat([torch.zeros_like(clip_emb).to(self.device), clip_emb], dim=0)]
cond['c_concat'] = [torch.cat([torch.zeros_like(c_concat).to(self.device), c_concat], dim=0)]
else:
cond['c_crossattn'] = [clip_emb]
cond['c_concat'] = [c_concat]
return cond
@torch.no_grad()
def __call__(self, embeddings, pred_rgb, mask, guidance_scale=3, dps_scale=0.2, as_latent=False, grad_scale=1, save_guidance_path:Path=None,
ddim_steps=200, ddim_eta=1, operator=None):
# todo: The upsacle is currectly hard-coded
upscale = 1
# with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
pred_rgb_256, crop_idx_all, xc = self._image2diffusion(embeddings, pred_rgb, mask, image_size=256*upscale)
cond = self._get_condition(xc, with_uncondition=True)
assert pred_rgb_256.shape[-1] == pred_rgb_256.shape[-2], f"Expect image of square size, get {pred_rgb.shape}"
latents = torch.randn_like(self.encode_imgs(pred_rgb_256))
if self.use_ddim:
self.scheduler.set_timesteps(ddim_steps)
else:
self.scheduler.set_timesteps(self.num_train_timesteps)
intermidates = []
for i, t in tqdm(enumerate(self.scheduler.timesteps)):
x_in = torch.cat([latents] * 2)
t_in = torch.cat([t.view(1).expand(latents.shape[0])] * 2).to(self.device)
noise_pred = self.model.apply_model(x_in, t_in, cond)
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# dps
if dps_scale > 0:
with torch.enable_grad():
t_batch = torch.randint(self.min_step, self.max_step + 1, (latents.shape[0],), dtype=torch.long, device=self.device) * 0 + t
x_hat_latents = self.model.predict_start_from_noise(latents.requires_grad_(True), t_batch, noise_pred)
x_hat = self.decode_latents(x_hat_latents)
x_hat = operator.forward(x_hat)
norm = torch.linalg.norm((pred_rgb_256-x_hat).reshape(pred_rgb_256.shape[0], -1), dim=-1)
guidance_score = torch.autograd.grad(norm.sum(), latents, retain_graph=True)[0]
if (not save_guidance_path is None) and i % (len(self.scheduler.timesteps)//20) == 0:
x_t = self.decode_latents(latents)
intermidates.append(torch.cat([x_hat, x_t, pred_rgb_256, pred_rgb_256-x_hat], dim=-2).detach().cpu())
# print("before", noise_pred[0, 2, 10, 16:22], noise_pred.shape, dps_scale)
logger.debug(f"Guidance loss: {norm}")
noise_pred = noise_pred + dps_scale * guidance_score
if self.use_ddim:
latents = self.scheduler.step(noise_pred, t, latents, eta=ddim_eta)['prev_sample']
else:
latents = self.scheduler.step(noise_pred.clone().detach(), t, latents)['prev_sample']
if dps_scale > 0:
del x_hat
del guidance_score
del noise_pred
del x_hat_latents
del norm
imgs = self.decode_latents(latents)
viz_images = torch.cat([pred_rgb_256, imgs],dim=-1)[:1]
if not save_guidance_path is None and len(intermidates) > 0:
save_image(viz_images, save_guidance_path)
viz_images = torch.cat(intermidates,dim=-1)[:1]
save_image(viz_images, save_guidance_path+"all.jpg")
# transform back to original images
img_ori_size = self.restore_crop(imgs, pred_rgb, crop_idx_all)
if not save_guidance_path is None:
img_ori_size_save = rearrange(img_ori_size, 'b h w c -> b c h w')[:1]
save_image(img_ori_size_save, save_guidance_path+"_out.jpg")
return img_ori_size
def decode_latents(self, latents):
# zs: [B, 4, 32, 32] Latent space image
# with self.model.ema_scope():
imgs = self.model.decode_first_stage(latents)
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs # [B, 3, 256, 256] RGB space image
def encode_imgs(self, imgs):
# imgs: [B, 3, 256, 256] RGB space image
# with self.model.ema_scope():
imgs = imgs * 2 - 1
# latents = torch.cat([self.model.get_first_stage_encoding(self.model.encode_first_stage(img.unsqueeze(0))) for img in imgs], dim=0)
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
return latents # [B, 4, 32, 32] Latent space image |