Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,660 Bytes
d72c37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import sys
sys.path.insert(1, '.')
import numpy as np
from omegaconf import DictConfig
import torch
from PIL import Image
import torchvision
import cv2
import matplotlib.pyplot as plt
from ldm.util import instantiate_from_config
import os
import io
import pickle
import webdataset as wds
import imageio
import time
from torch import distributed as dist
from itertools import chain
class ObjaverseDataDecoder:
def __init__(self,
target_name="albedo",
image_transforms=[],
default_trans=torch.zeros(3),
postprocess=None,
return_paths=False,
mask_name="alpha",
test=False,
condition_name=None,
bg_color="white",
target_name_pool=None,
**kargs
) -> None:
"""Create a dataset from blender rendering results.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
# testing behaves differently
self.test = test
self.target_name = target_name
self.mask_name = mask_name
self.default_trans = default_trans
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
# extra condition
self.condition_name = condition_name
self.target_name_pool = target_name_pool if not target_name_pool is None else [target_name]
self.counter = 0
self.tform = image_transforms["totensor"]
self.img_size = image_transforms["size"]
self.tsize = torchvision.transforms.Compose([torchvision.transforms.Resize(self.img_size)])
if bg_color == "white":
self.bg_color = [1., 1., 1., 1.]
elif bg_color == "noise":
self.bg_color = "noise"
else:
raise NotImplementedError
def path_parsing(self, filename, cond_name=None):
# cached path loads albedo
if 'albedo' in filename:
filename = filename.replace('albedo', self.target_name)
if self.target_name=="gloss_shaded":
filename = filename.replace('gloss_direct', self.target_name).replace("exr", "jpg")
filename_targets = [filename.replace(self.target_name, "gloss_direct").replace("jpg", "exr"),
filename.replace(self.target_name, "gloss_color")]
elif self.target_name=="diffuse_shaded":
filename = filename.replace('diffuse_direct', self.target_name).replace("exr", "jpg")
filename_targets = [filename.replace(self.target_name, "diffuse_direct").replace("jpg", "exr"),
filename.replace(self.target_name, "albedo")]
else:
filename_targets = None
normal_condition_filename = None
if self.test and "images_train" in filename:
# Currently. "images_train" exists in test set, we write this for clearity
condition_filename = filename
mask_filename = filename.replace('images_train', 'masks')
if self.condition_name == "normal":
raise NotImplementedError("Testing with normal conditioning on custom data is not supported")
else:
cond_name_prefix = filename.split(".", 1)[0] + "." if cond_name is None else cond_name
condition_filename = cond_name_prefix + filename.rsplit('.', 1)[1]
mask_filename = filename.replace(self.target_name, self.mask_name)
if self.condition_name == "normal":
normal_condition_filename = filename.replace(self.target_name, "normal")
return filename, condition_filename, mask_filename, normal_condition_filename, filename_targets
def read_images(self, filename, condition_filename, normal_condition_filename):
# image reading
if self.target_name in ["gloss_shaded", "diffuse_shaded"]:
target_im_0 = np.array(self.normalized_read(filename[0]))
target_im_1 = np.array(self.normalized_read(filename[1]))
target_im = np.clip(target_im_0 * target_im_1, 0, 1)
else:
target_im = np.array(self.normalized_read(filename))
cond_im = np.array(self.normalized_read(condition_filename))
if self.condition_name == "normal":
normal_img = np.array(self.normalized_read(normal_condition_filename))
else:
normal_img = None
return target_im, cond_im, normal_img
def image_post_processing(self, img_mask, target_im, cond_im, normal_img):
# make sure image has 3 dimension
if len(img_mask.shape) == 2:
img_mask = img_mask[:, :, np.newaxis]
else:
img_mask = img_mask[:, :, :3]
# transform into desired format
target_im, crop_idx = self.load_im(target_im, img_mask, self.bg_color, crop_idx=True)
target_im = np.uint8(self.tsize(target_im))
cond_im = np.uint8(self.tsize(self.load_im(cond_im, img_mask, self.bg_color)))
if self.condition_name == "normal":
normal_img = np.uint8(self.tsize(self.load_im(normal_img, img_mask, self.bg_color)))
else:
normal_img = None
return target_im, cond_im, normal_img, crop_idx
# def cartesian_to_spherical(self, xyz):
# ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
# xy = xyz[:,0]**2 + xyz[:,1]**2
# z = np.sqrt(xy + xyz[:,2]**2)
# theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
# #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
# azimuth = np.arctan2(xyz[:,1], xyz[:,0])
# return np.array([theta, azimuth, z])
def load_im(self, img, img_mask, color, crop_idx=False):
'''
replace background pixel with random color in rendering
'''
# our rendering do not have a valid alpha channel.
# We use a seperate mask, which also do not have a valid alpha
if img.shape[-1] == 3:
img = np.concatenate([img, np.ones_like(img[..., :1])], axis=-1)
# image maske shape align with image size
if (img.shape[0] != img_mask.shape[0]) or (img.shape[1] != img_mask.shape[1]):
img_mask = cv2.resize(img_mask,
(img.shape[1], img.shape[0]),
interpolation=cv2.INTER_NEAREST)[:, :, np.newaxis]
if isinstance(color, str):
random_img = np.random.rand(*(img.shape))
img[img_mask[:, :, -1] <= 0.5] = random_img[img_mask[:, :, -1] <= 0.5]
else:
img[img_mask[:, :, -1] <= 0.5] = color
if self.test:
# crop out valid_mask
img, crop_uv = self.center_crop(img[:, :, :3], img_mask)
else:
crop_uv = None
# center crop
if img.shape[0] > img.shape[1]:
margin = int((img.shape[0] - img.shape[1]) // 2)
img = img[margin:margin+img.shape[1]]
elif img.shape[1] > img.shape[0]:
margin = int((img.shape[1] - img.shape[0]) // 2)
img = img[:, margin:margin+img.shape[0]]
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
if crop_idx:
return img, crop_uv
return img
def center_crop(self, img, mask, mask_ratio=.8):
mask_uvs = np.vstack(np.nonzero(mask[:, :, -1] > 0.5))
min_uv, max_uv = np.min(mask_uvs, axis=-1), np.max(mask_uvs, axis=-1)
img = img + (mask[..., -1:] <= 0.5)
half_size = int(max(max_uv - min_uv) // 2)
crop_length = (max_uv - min_uv) // 2
center_uv = min_uv + crop_length
expand_hasl_size = int(half_size / mask_ratio)
size = expand_hasl_size * 2 + 1
img_new = np.ones((size, size, 3))
img_new[expand_hasl_size-crop_length[0]:expand_hasl_size+crop_length[0]+1, expand_hasl_size-crop_length[1]:expand_hasl_size+crop_length[1]+1] = \
img[center_uv[0]-crop_length[0]:center_uv[0]+crop_length[0]+1, center_uv[1]-crop_length[1]:center_uv[1]+crop_length[1]+1]
crop_uv = np.array([expand_hasl_size, crop_length[0], crop_length[1], center_uv[0], center_uv[1], size], dtype=int)
return img_new, crop_uv
def transform_normal(self, normal_input, cam):
# load camera
img_mask = torch.linalg.norm(normal_input, dim=-1) > 1.5
extrinsic, K = cam
extrinsic = np.concatenate([extrinsic, np.zeros(4).reshape(1, 4)], axis=0)
extrinsic[3, 3] = 1
pose = np.linalg.inv(extrinsic)
temp = pose[1] + 0.0
pose[1] = -pose[2]
pose[2] = temp
extrinsic = torch.from_numpy(np.linalg.inv(pose)).float()
# to normal
normal_img = extrinsic[None, :3, :3] @ normal_input[..., :3].reshape(-1, 3, 1)
normal_img = normal_img.reshape(normal_input.shape[0], normal_input.shape[1], 3)
normal_img[img_mask] = 1.0
return normal_img
def parse_item(self, target_im, cond_img, normal_img, filename, target_ids, **args):
data = {}
# we need to transform normal to cmaera frame
if self.target_name == "normal":
target_im = self.transform_normal(target_im, self.get_camera(filename, **args))
# normal conditioning
if self.condition_name == "normal":
normal_img = self.transform_normal(normal_img, self.get_camera(filename, **args))
data["image_target"] = target_im
data["image_cond"] = cond_img
if self.condition_name == "normal":
data["img_normal"] = normal_img
if self.test or self.return_paths:
data["path"] = str(filename)
data["label"] = torch.zeros(1).reshape(1, 1, 1)+target_ids
if self.postprocess is not None:
data = self.postprocess(data)
return data
def normalized_read(self, imgpath):
img = np.array(imageio.imread(imgpath))
if img.dtype == np.uint8:
img = img / 255.0
else:
img = img ** (1 / 2.2)
return img
def process_im(self, im):
im = Image.fromarray(im)
im = im.convert("RGB")
return self.tform(im)
class ObjaverseDecoerWDS(ObjaverseDataDecoder):
def __init__(self, **kargs) -> None:
super().__init__(**kargs)
def dict2tuple(self, data):
returns = (data["image_target"], data["image_cond"],data["label"],)
if self.condition_name == "normal":
returns +=(data["img_normal"], )
if self.test or self.return_paths:
returns += (data["path"],)
return returns
def tuple2dict(self, data):
returns = {}
returns["image_target"] = data[0]
returns["image_cond"] = data[1]
returns["label"] = data[2]
if self.condition_name == "normal":
returns["img_normal"] = data[3]
if self.test or self.return_paths:
returns["path"] = data[-1]
return returns
def data_filter(self, albedo, spec, diffuse_shad, spec_shad):
returns = {}
returns["image_target"] = data[0]
returns["image_cond"] = data[1]
if self.condition_name == "normal":
returns["img_normal"] = data[2]
if self.test or self.return_paths:
returns["path"] = data[-1]
return returns
def get_camera(self, input_filename, sample):
camera_file = input_filename.replace(f'{self.target_name}0001', \
'camera').rsplit(".")[0] + ".pkl"
mask_filename_byte = io.BytesIO(sample[camera_file])
cam = pickle.load(mask_filename_byte)
return cam
def process_sample(self, sample):
# start_worker=time.time()
results = []
for target_ids, target_name in enumerate(self.target_name_pool):
_result = self.process_sample_single(sample, target_ids, target_name)
results.append(self.dict2tuple(_result))
results = wds.filters.default_collation_fn(results)
return results
def batch_reordering(self, sample):
batch_splits = []
for data_idx, _ in enumerate(sample):
batch_splits.append(
torch.cat(
torch.chunk(sample[data_idx], dim=1,
chunks=len(self.target_name_pool)),
dim=0)[:,0]
)
return self.tuple2dict(batch_splits)
def process_sample_single(self, sample, target_ids, target_name):
# get target image filename
self.target_name = target_name
target_file_name = self.target_name
if self.target_name=="gloss_shaded":
target_file_name = "gloss_direct"
elif self.target_name=="diffuse_shaded":
target_file_name = "diffuse_direct"
for k in list(sample.keys()):
if target_file_name not in k:
continue
target_key = k
break
# ##############
# prev_time = start_worker
# current_time = time.time()
# print(f"find target takes: {current_time - prev_time}")
# ##############
filename, condition_filename, \
mask_filename, normal_condition_filename, filename_targets = self.path_parsing(target_key, "")
# get file streams
if filename_targets is None:
filename_byte = io.BytesIO(sample[filename])
else:
filename_byte = [io.BytesIO(sample[filename_target]) for filename_target in filename_targets]
condition_filename_byte = io.BytesIO(sample[condition_filename])
normal_condition_filename_byte = io.BytesIO(sample[normal_condition_filename]) \
if self.condition_name == "normal" else None
mask_filename_byte = io.BytesIO(sample[mask_filename])
# image reading
target_im, cond_im, normal_img = self.read_images(filename_byte,
condition_filename_byte, normal_condition_filename_byte)
# mask reading
img_mask = np.array(self.normalized_read(mask_filename_byte))
# post processing
target_im, cond_im, normal_img, _ = self.image_post_processing(img_mask, target_im, cond_im, normal_img)
# transform
target_im = self.process_im(target_im)
cond_im = self.process_im(cond_im)
normal_img = self.process_im(normal_img) \
if self.condition_name == "normal" \
else None
data = self.parse_item(target_im, cond_im, normal_img, filename, target_ids, sample=sample)
# override for file path
if self.test or self.return_paths:
data["path"] = sample["__key__"]
result = dict(__key__=sample["__key__"])
result.update(data)
return result
if __name__=="__main__":
from torchvision import transforms
from einops import rearrange
torch.distributed.init_process_group(backend="nccl")
image_transforms = [transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
image_transforms = torchvision.transforms.Compose(image_transforms)
image_transforms = {
"size": 256,
"totensor": image_transforms
}
data_list_dir = "/home/chenxi/code/material-diffusion/data/big_data_lists"
tar_name_list = sorted(os.listdir(data_list_dir))[1:4]
tar_list = [_name.rsplit("_num")[0]+".tar" for _name in tar_name_list]
tar_dir = "/home/chenxi/code/material-diffusion/data/big_data_transed"
tars = [os.path.join(tar_dir, _name) for _name in tar_list]
dataset_size = 0
imgperobj = 10
print("list dirs...")
for _name in tar_name_list:
num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
print(num_obj, " : ", _name)
dataset_size += num_obj * imgperobj
decoder = ObjaverseDecoerWDS(image_transforms=image_transforms,
return_paths=True)
batch_size = 8
print('============= length of training dataset %d =============' % (dataset_size // batch_size // 2))
dataset = (wds.WebDataset(tars,
repeat=0,
nodesplitter=wds.shardlists.split_by_node)
.shuffle(100)
.map(decoder.process_sample)
.map(decoder.dict2tuple)
.batched(batch_size, partial=False)
.map(decoder.tuple2dict)
.with_epoch(dataset_size // batch_size // 2)
.with_length(dataset_size // batch_size)
)
from torch.utils.data import DataLoader
# loader = DataLoader(dataset, batch_size=None, num_workers=8, shuffle=False)
loader = (wds.WebLoader(dataset, batch_size=None, num_workers=2, shuffle=False)
.map(decoder.dict2tuple)
.unbatched()
# .shuffle(100)
.batched(batch_size)
.map(decoder.tuple2dict)
)
print("# loader length", len(dataset))
for epoch in range(2):
ind = -1
for sample in loader:
assert "image_target" in sample
assert "image_cond" in sample
assert "path" in sample
ind += 1
if ind != 0:
continue
# replace to this for file path
# worker_info = torch.utils.data.get_worker_info()
# if worker_info is not None:
# worker = worker_info.id
# num_workers = worker_info.num_workers
# data["path"] = sample["__url__"]+"--"+sample["__key__"] +f".{worker}/{num_workers}"
# print(f"{ind}: shape {sample['image_target'].shape} {sample['path'][0].rsplit('/', 1)[-2]}")
print("##############")
for i in range(len(sample['path'])):
print(f"epoch {epoch}, it {ind}: shape {sample['image_target'].shape} {sample['path'][i].rsplit('--', 1)[0].rsplit('/', 2)[-1]} {sample['path'][i].rsplit('--', 1)[1].rsplit('/', 3)[-3]} {sample['path'][i].rsplit('--', 1)[1].rsplit('/',4)[-4]} {sample['path'][i].rsplit('.', 1)[-1]} rank: {dist.get_rank()}")
print("##############")
print(sample["path"])
print(sample["path"])
print(f"NUmber of samples: {ind} {dataset_size} {len(dataset)} rank: {dist.get_rank()}")
# 1. Remember samples are batched inside each worker, the outside data loader only sees one sample
# 2. All batch, epoch, and length settings are only visible within each worker
# 3. Unbatch and Suffle and then re-batch in loader result in between worker shuffle.
# This also allows to control of loader batching and worker batching for CPU optimization of worker-loader data transfer.
# https://github.com/webdataset/webdataset/issues/141#issuecomment-1043190147
# 4. It seems that data just repeat forever to satisfy with_epoch
# 5. Torch datalogger requires the dataset to have a len() method, which is used to schdule sample idx
# 6. DDP sampler will return its only length
# 7. WebLoader does not need length, it only raises the end of the iteration when data is running out
# 8. How does torch loader deal with datasets with fewer sizes than claims?
# 9. Set epoch will make sampling start from the beginning when a new epoch starts. Observed by disable shuffle and one batch repeat
# And each epoch will have a different sampling seed
# 10. DataLoader with IterableDataset: expected unspecified sampler option. DDP sampler will not be usable.
# !0. In summary:
# For ddp multi-worker training, the worker splitter and node splitter will make sure tars are splitted into each worker
# We have to manually adjust with_epoch with respect to num_worker and num_node and batch_size
def nodesplitter(src, group=None):
if torch.distributed.is_initialized():
if group is None:
group = torch.distributed.group.WORLD
rank = torch.distributed.get_rank(group=group)
size = torch.distributed.get_world_size(group=group)
print(f"nodesplitter: rank={rank} size={size}")
count = 0
for i, item in enumerate(src):
if i % size == rank:
yield item
count += 1
print(f"nodesplitter: rank={rank} size={size} count={count} DONE")
else:
yield from src |