File size: 20,660 Bytes
d72c37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import sys
sys.path.insert(1, '.')
import numpy as np
from omegaconf import DictConfig
import torch
from PIL import Image
import torchvision
import cv2
import matplotlib.pyplot as plt
from ldm.util import instantiate_from_config
import os
import io
import pickle
import webdataset as wds
import imageio
import time
from torch import distributed as dist
from itertools import chain


class ObjaverseDataDecoder:
    def __init__(self,
        target_name="albedo",
        image_transforms=[],
        default_trans=torch.zeros(3),
        postprocess=None,
        return_paths=False,
        mask_name="alpha",
        test=False,
        condition_name=None,
        bg_color="white",
        target_name_pool=None,
        **kargs
        ) -> None:
        """Create a dataset from blender rendering results.
        If you pass in a root directory it will be searched for images
        ending in ext (ext can be a list)
        """
        # testing behaves differently
        self.test = test
        self.target_name = target_name
        self.mask_name = mask_name
        self.default_trans = default_trans
        self.return_paths = return_paths
        if isinstance(postprocess, DictConfig):
            postprocess = instantiate_from_config(postprocess)
        self.postprocess = postprocess
        # extra condition
        self.condition_name = condition_name
        self.target_name_pool = target_name_pool if not target_name_pool is None else [target_name]
        self.counter = 0

        self.tform = image_transforms["totensor"]
        self.img_size = image_transforms["size"]
        self.tsize = torchvision.transforms.Compose([torchvision.transforms.Resize(self.img_size)])
        if bg_color == "white":
            self.bg_color = [1., 1., 1., 1.] 
        elif bg_color == "noise":
            self.bg_color = "noise"
        else:
            raise NotImplementedError

    def path_parsing(self, filename, cond_name=None):
        # cached path loads albedo
        if 'albedo' in filename:
            filename = filename.replace('albedo', self.target_name)
        if self.target_name=="gloss_shaded":
            filename = filename.replace('gloss_direct', self.target_name).replace("exr", "jpg")
            filename_targets = [filename.replace(self.target_name, "gloss_direct").replace("jpg", "exr"),
                                filename.replace(self.target_name, "gloss_color")]
        elif self.target_name=="diffuse_shaded":
            filename = filename.replace('diffuse_direct', self.target_name).replace("exr", "jpg")
            filename_targets = [filename.replace(self.target_name, "diffuse_direct").replace("jpg", "exr"),
                                filename.replace(self.target_name, "albedo")]
        else:
            filename_targets = None

        normal_condition_filename = None
        if self.test and "images_train" in filename:
            # Currently. "images_train" exists in test set, we write this for clearity
            condition_filename = filename
            mask_filename = filename.replace('images_train', 'masks')
            if self.condition_name == "normal":
                raise NotImplementedError("Testing with normal conditioning on custom data is not supported")
        else:
            cond_name_prefix = filename.split(".", 1)[0] + "." if cond_name is None else cond_name
            condition_filename = cond_name_prefix + filename.rsplit('.', 1)[1]
            mask_filename = filename.replace(self.target_name, self.mask_name)
            if self.condition_name == "normal":
                normal_condition_filename = filename.replace(self.target_name, "normal")

        return filename, condition_filename, mask_filename, normal_condition_filename, filename_targets
    
    def read_images(self, filename, condition_filename, normal_condition_filename):
        # image reading
        if self.target_name in ["gloss_shaded", "diffuse_shaded"]:
            target_im_0 = np.array(self.normalized_read(filename[0]))
            target_im_1 = np.array(self.normalized_read(filename[1]))
            target_im = np.clip(target_im_0 * target_im_1, 0, 1)
        else:
            target_im = np.array(self.normalized_read(filename))

        cond_im = np.array(self.normalized_read(condition_filename))
        
        if self.condition_name == "normal":
            normal_img = np.array(self.normalized_read(normal_condition_filename)) 
        else:
            normal_img = None

        return target_im, cond_im, normal_img
    

    def image_post_processing(self, img_mask, target_im, cond_im, normal_img):
        # make sure image has 3 dimension
        if len(img_mask.shape) == 2:
            img_mask = img_mask[:, :, np.newaxis]
        else:
            img_mask = img_mask[:, :, :3]

        # transform into desired format
        target_im, crop_idx = self.load_im(target_im, img_mask, self.bg_color, crop_idx=True)
        target_im = np.uint8(self.tsize(target_im))
        cond_im = np.uint8(self.tsize(self.load_im(cond_im, img_mask, self.bg_color)))

        if self.condition_name == "normal":
            normal_img = np.uint8(self.tsize(self.load_im(normal_img, img_mask, self.bg_color)))
        else:
            normal_img = None
        return target_im, cond_im, normal_img, crop_idx

    # def cartesian_to_spherical(self, xyz):
    #     ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
    #     xy = xyz[:,0]**2 + xyz[:,1]**2
    #     z = np.sqrt(xy + xyz[:,2]**2)
    #     theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
    #     #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
    #     azimuth = np.arctan2(xyz[:,1], xyz[:,0])
    #     return np.array([theta, azimuth, z])


    def load_im(self, img, img_mask, color, crop_idx=False):
        '''
        replace background pixel with random color in rendering
        '''
        # our rendering do not have a valid alpha channel. 
        # We use a seperate mask, which also do not have a valid alpha
        if img.shape[-1] == 3:
            img = np.concatenate([img, np.ones_like(img[..., :1])], axis=-1)

        # image maske shape align with image size
        if (img.shape[0] != img_mask.shape[0]) or (img.shape[1] != img_mask.shape[1]):
            img_mask = cv2.resize(img_mask,
                                  (img.shape[1], img.shape[0]), 
                                  interpolation=cv2.INTER_NEAREST)[:, :, np.newaxis]    

        if isinstance(color, str):
            random_img = np.random.rand(*(img.shape))
            img[img_mask[:, :, -1] <= 0.5] = random_img[img_mask[:, :, -1] <= 0.5]
        else:
            img[img_mask[:, :, -1] <= 0.5] = color

        if self.test:
            # crop out valid_mask
            img, crop_uv = self.center_crop(img[:, :, :3], img_mask)
        else:
            crop_uv = None

        # center crop
        if img.shape[0] > img.shape[1]:
            margin = int((img.shape[0] - img.shape[1]) // 2)
            img = img[margin:margin+img.shape[1]]
        elif img.shape[1] > img.shape[0]:
            margin = int((img.shape[1] - img.shape[0]) // 2)
            img = img[:, margin:margin+img.shape[0]]    

        img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
        if crop_idx:
            return img, crop_uv
        return img
    
    def center_crop(self, img, mask, mask_ratio=.8):
        mask_uvs = np.vstack(np.nonzero(mask[:, :, -1] > 0.5))
        min_uv, max_uv = np.min(mask_uvs, axis=-1), np.max(mask_uvs, axis=-1)
        img = img + (mask[..., -1:] <= 0.5)
        
        half_size = int(max(max_uv - min_uv) // 2)
        crop_length = (max_uv - min_uv) // 2
        center_uv = min_uv + crop_length
        expand_hasl_size = int(half_size / mask_ratio)
        size = expand_hasl_size * 2 + 1

        img_new = np.ones((size, size, 3))
        img_new[expand_hasl_size-crop_length[0]:expand_hasl_size+crop_length[0]+1, expand_hasl_size-crop_length[1]:expand_hasl_size+crop_length[1]+1] = \
            img[center_uv[0]-crop_length[0]:center_uv[0]+crop_length[0]+1, center_uv[1]-crop_length[1]:center_uv[1]+crop_length[1]+1]
        crop_uv = np.array([expand_hasl_size, crop_length[0], crop_length[1], center_uv[0], center_uv[1], size], dtype=int)
        return img_new, crop_uv

    def transform_normal(self, normal_input, cam):
        # load camera
        img_mask = torch.linalg.norm(normal_input, dim=-1) > 1.5
        extrinsic, K = cam
        extrinsic = np.concatenate([extrinsic, np.zeros(4).reshape(1, 4)], axis=0)
        extrinsic[3, 3] = 1
        pose = np.linalg.inv(extrinsic)
        temp = pose[1] + 0.0
        pose[1] = -pose[2]
        pose[2] = temp
        extrinsic = torch.from_numpy(np.linalg.inv(pose)).float()

        # to normal
        normal_img = extrinsic[None, :3, :3] @ normal_input[..., :3].reshape(-1, 3, 1)
        normal_img = normal_img.reshape(normal_input.shape[0], normal_input.shape[1], 3)

        normal_img[img_mask] = 1.0
        return normal_img
    
    def parse_item(self, target_im, cond_img, normal_img, filename, target_ids, **args):
        data = {}

        # we need to transform normal to cmaera frame
        if self.target_name == "normal":
            target_im = self.transform_normal(target_im, self.get_camera(filename, **args))
        
        # normal conditioning
        if self.condition_name == "normal":
            normal_img = self.transform_normal(normal_img, self.get_camera(filename, **args))

        data["image_target"] = target_im
        data["image_cond"] = cond_img
        if self.condition_name == "normal":
            data["img_normal"] = normal_img

        if self.test or self.return_paths:
            data["path"] = str(filename)   

        data["label"] = torch.zeros(1).reshape(1, 1, 1)+target_ids   

        if self.postprocess is not None:
            data = self.postprocess(data)
        return data

    def normalized_read(self, imgpath):
        img = np.array(imageio.imread(imgpath))
        if img.dtype == np.uint8:
           img = img / 255.0
        else:
           img = img ** (1 / 2.2)
        return img 
    
    def process_im(self, im):
        im = Image.fromarray(im)
        im = im.convert("RGB")
        return self.tform(im)
    

class ObjaverseDecoerWDS(ObjaverseDataDecoder):
    def __init__(self, **kargs) -> None:
        super().__init__(**kargs)

    def dict2tuple(self, data):
        returns = (data["image_target"], data["image_cond"],data["label"],)
        if self.condition_name == "normal":
            returns +=(data["img_normal"], )
        if self.test or self.return_paths:
            returns += (data["path"],)
        return returns
    
    def tuple2dict(self, data):
        returns = {}
        returns["image_target"] = data[0]
        returns["image_cond"] = data[1]
        returns["label"] = data[2]
        
        if self.condition_name == "normal":
            returns["img_normal"] = data[3]
    
        if self.test or self.return_paths:
            returns["path"] = data[-1]

        return returns

    def data_filter(self, albedo, spec, diffuse_shad, spec_shad):
        returns = {}
        returns["image_target"] = data[0]
        returns["image_cond"] = data[1]
        if self.condition_name == "normal":
            returns["img_normal"] = data[2]
    
        if self.test or self.return_paths:
            returns["path"] = data[-1]

        return returns

    def get_camera(self, input_filename, sample):
        camera_file = input_filename.replace(f'{self.target_name}0001', \
                                             'camera').rsplit(".")[0] + ".pkl"
        mask_filename_byte = io.BytesIO(sample[camera_file])
        cam = pickle.load(mask_filename_byte)
        return cam

    def process_sample(self, sample):
        # start_worker=time.time()
        results = []
        for target_ids, target_name in enumerate(self.target_name_pool):
            _result = self.process_sample_single(sample, target_ids, target_name)
            results.append(self.dict2tuple(_result))
        results = wds.filters.default_collation_fn(results)
        return results

    def batch_reordering(self, sample):
        batch_splits = []
        for data_idx, _ in enumerate(sample):
            batch_splits.append(
                torch.cat(
                    torch.chunk(sample[data_idx], dim=1, 
                                chunks=len(self.target_name_pool)),
                    dim=0)[:,0]
            )
        return self.tuple2dict(batch_splits)

    def process_sample_single(self, sample, target_ids, target_name):

        # get target image filename
        self.target_name = target_name
        target_file_name = self.target_name
        if self.target_name=="gloss_shaded":
            target_file_name = "gloss_direct"
        elif self.target_name=="diffuse_shaded":
            target_file_name = "diffuse_direct"

        for k in list(sample.keys()):
            if target_file_name not in k:
                continue
            target_key = k
            break

        # ##############
        # prev_time = start_worker
        # current_time = time.time()
        # print(f"find target takes: {current_time - prev_time}")
        # ##############
        
        filename, condition_filename, \
            mask_filename, normal_condition_filename, filename_targets = self.path_parsing(target_key, "")

        # get file streams
        if filename_targets is None:
            filename_byte = io.BytesIO(sample[filename])
        else:
            filename_byte = [io.BytesIO(sample[filename_target]) for filename_target in filename_targets]
        condition_filename_byte = io.BytesIO(sample[condition_filename])
        normal_condition_filename_byte = io.BytesIO(sample[normal_condition_filename]) \
            if self.condition_name == "normal" else None
        mask_filename_byte = io.BytesIO(sample[mask_filename])

        # image reading
        target_im, cond_im, normal_img = self.read_images(filename_byte, 
                                                         condition_filename_byte, normal_condition_filename_byte)

        # mask reading
        img_mask = np.array(self.normalized_read(mask_filename_byte))

        # post processing
        target_im, cond_im, normal_img, _ = self.image_post_processing(img_mask, target_im, cond_im, normal_img)

        # transform
        target_im = self.process_im(target_im)
        cond_im = self.process_im(cond_im)
        normal_img = self.process_im(normal_img) \
            if self.condition_name == "normal" \
                else None

        data = self.parse_item(target_im, cond_im, normal_img, filename, target_ids, sample=sample)
        # override for file path
        if self.test or self.return_paths:
            data["path"] = sample["__key__"]

        result = dict(__key__=sample["__key__"])
        result.update(data)
        return result


if __name__=="__main__":
    from torchvision import transforms
    from einops import rearrange
    torch.distributed.init_process_group(backend="nccl")
    image_transforms = [transforms.ToTensor(),
                            transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
    image_transforms = torchvision.transforms.Compose(image_transforms)
    image_transforms = {
        "size": 256,
        "totensor": image_transforms
    }
    
    data_list_dir = "/home/chenxi/code/material-diffusion/data/big_data_lists"
    tar_name_list = sorted(os.listdir(data_list_dir))[1:4]
    tar_list = [_name.rsplit("_num")[0]+".tar" for _name in tar_name_list]
    tar_dir = "/home/chenxi/code/material-diffusion/data/big_data_transed"
    tars = [os.path.join(tar_dir, _name) for _name in tar_list]
    dataset_size = 0
    imgperobj = 10
    print("list dirs...")
    for _name in tar_name_list:
        num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
        print(num_obj, " : ", _name)
        dataset_size += num_obj * imgperobj

    decoder = ObjaverseDecoerWDS(image_transforms=image_transforms, 
                                 return_paths=True)
    batch_size = 8

    print('============= length of training dataset %d =============' % (dataset_size // batch_size // 2))
    dataset = (wds.WebDataset(tars,
                                repeat=0,
                                nodesplitter=wds.shardlists.split_by_node)
                .shuffle(100)
                .map(decoder.process_sample)
                .map(decoder.dict2tuple)
                .batched(batch_size, partial=False)
                .map(decoder.tuple2dict)
                .with_epoch(dataset_size // batch_size // 2)
                .with_length(dataset_size // batch_size)
    )
    from torch.utils.data import DataLoader
    # loader = DataLoader(dataset, batch_size=None, num_workers=8, shuffle=False)
    loader = (wds.WebLoader(dataset, batch_size=None, num_workers=2, shuffle=False)
            .map(decoder.dict2tuple)
            .unbatched()
            # .shuffle(100)
            .batched(batch_size)
            .map(decoder.tuple2dict)
    )


    print("# loader length", len(dataset))
    
    for epoch in range(2):
        ind = -1
        for sample in loader:
            assert "image_target" in sample
            assert "image_cond" in sample
            assert "path" in sample
            ind += 1
            if ind != 0:
                continue

            # replace to this for file path
            # worker_info = torch.utils.data.get_worker_info()
            # if worker_info is not None:
            #     worker = worker_info.id
            #     num_workers = worker_info.num_workers
            # data["path"] = sample["__url__"]+"--"+sample["__key__"] +f".{worker}/{num_workers}"

            # print(f"{ind}: shape {sample['image_target'].shape} {sample['path'][0].rsplit('/', 1)[-2]}")
            print("##############")
            for i in range(len(sample['path'])):
                print(f"epoch {epoch}, it {ind}: shape {sample['image_target'].shape} {sample['path'][i].rsplit('--', 1)[0].rsplit('/', 2)[-1]} {sample['path'][i].rsplit('--', 1)[1].rsplit('/', 3)[-3]} {sample['path'][i].rsplit('--', 1)[1].rsplit('/',4)[-4]} {sample['path'][i].rsplit('.', 1)[-1]} rank: {dist.get_rank()}")
            print("##############")


        print(sample["path"])
            
        print(sample["path"])

    print(f"NUmber of samples: {ind} {dataset_size} {len(dataset)} rank: {dist.get_rank()}")
    # 1.  Remember samples are batched inside each worker, the outside data loader only sees one sample
    # 2.  All batch, epoch, and length settings are only visible within each worker
    # 3.  Unbatch and Suffle and then re-batch in loader result in between worker shuffle.
    #     This also allows to control of loader batching and worker batching for CPU optimization of worker-loader data transfer.
    #     https://github.com/webdataset/webdataset/issues/141#issuecomment-1043190147
    # 4.  It seems that data just repeat forever to satisfy with_epoch 
    # 5.  Torch datalogger requires the dataset to have a len() method, which is used to schdule sample idx
    # 6.  DDP sampler will return its only length
    # 7.  WebLoader does not need length, it only raises the end of the iteration when data is running out
    # 8.  How does torch loader deal with datasets with fewer sizes than claims?
    # 9.  Set epoch will make sampling start from the beginning when a new epoch starts. Observed by disable shuffle and one batch repeat
    #     And each epoch will have a different sampling seed
    # 10. DataLoader with IterableDataset: expected unspecified sampler option. DDP sampler will not be usable.
    # !0. In summary:
    # For ddp multi-worker training, the worker splitter and node splitter will make sure tars are splitted into each worker
    # We have to manually adjust with_epoch with respect to num_worker and num_node and batch_size

def nodesplitter(src, group=None):
    if torch.distributed.is_initialized():
        if group is None:
            group = torch.distributed.group.WORLD
        rank = torch.distributed.get_rank(group=group)
        size = torch.distributed.get_world_size(group=group)
        print(f"nodesplitter: rank={rank} size={size}")
        count = 0
        for i, item in enumerate(src):
            if i % size == rank:
                yield item
                count += 1
        print(f"nodesplitter: rank={rank} size={size} count={count} DONE")
    else:
        yield from src