Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,697 Bytes
d72c37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import sys
sys.path.insert(1, '.')
from typing import Dict
import webdataset as wds
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
import torchvision
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
import pytorch_lightning as pl
import copy
import csv
import cv2
import random
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import json
import os, sys
import webdataset as wds
import math
from torch.utils.data.distributed import DistributedSampler
import glob
import pickle
from ldm.data.objaverse_rendered import get_rendered_objaverse_list_v0
from ldm.data.decoder import ObjaverseDataDecoder, ObjaverseDecoerWDS, nodesplitter
from loguru import logger
from torch import distributed as dist
from tqdm import tqdm
from multiprocessing.pool import ThreadPool
# Some hacky things to make experimentation easier
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
ds = make_multi_folder_data(paths, caption_files, **kwargs)
return TransformDataset(ds)
def make_nfp_data(base_path):
dirs = list(Path(base_path).glob("*/"))
print(f"Found {len(dirs)} folders")
print(dirs)
tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
return torch.utils.data.ConcatDataset(datasets)
class VideoDataset(Dataset):
def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
self.root_dir = Path(root_dir)
self.caption_file = caption_file
self.n = n
ext = "mp4"
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.offset = offset
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
with open(self.caption_file) as f:
reader = csv.reader(f)
rows = [row for row in reader]
self.captions = dict(rows)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
for i in range(10):
try:
return self._load_sample(index)
except Exception:
# Not really good enough but...
print("uh oh")
def _load_sample(self, index):
n = self.n
filename = self.paths[index]
min_frame = 2*self.offset + 2
vid = cv2.VideoCapture(str(filename))
max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
curr_frame_n = random.randint(min_frame, max_frames)
vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
_, curr_frame = vid.read()
prev_frames = []
for i in range(n):
prev_frame_n = curr_frame_n - (i+1)*self.offset
vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
_, prev_frame = vid.read()
prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
prev_frames.append(prev_frame)
vid.release()
caption = self.captions[filename.name]
data = {
"image": self.tform(Image.fromarray(curr_frame[...,::-1])),
"prev": torch.cat(prev_frames, dim=-1),
"txt": caption
}
return data
# end hacky things
def make_tranforms(image_transforms):
# if isinstance(image_transforms, ListConfig):
# image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms = []
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
return image_transforms
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class NfpDataset(Dataset):
def __init__(self,
root_dir,
image_transforms=[],
ext="jpg",
default_caption="",
) -> None:
"""assume sequential frames and a deterministic transform"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.tform = make_tranforms(image_transforms)
def __len__(self):
return len(self.paths) - 1
def __getitem__(self, index):
prev = self.paths[index]
curr = self.paths[index+1]
data = {}
data["image"] = self._load_im(curr)
data["prev"] = self._load_im(prev)
data["txt"] = self.default_caption
return data
def _load_im(self, filename):
im = Image.open(filename).convert("RGB")
return self.tform(im)
class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
def __init__(self, root_dir, batch_size, train=None, validation=None,
test=None, num_workers=4, objaverse_data_list=None, ext="png",
target_name="albedo", use_wds=True, tar_config=None, **kwargs):
super().__init__(self)
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.kwargs = kwargs
self.tar_config = tar_config
self.use_wds = use_wds
if train is not None:
dataset_config = train
if validation is not None:
dataset_config = validation
image_transforms = [transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
image_transforms = torchvision.transforms.Compose(image_transforms)
self.image_transforms = {
"size": dataset_config.image_transforms.size,
"totensor": image_transforms
}
self.target_name = target_name
self.objaverse_data_list = objaverse_data_list
self.ext = ext
def naive_setup(self):
# get object data list
if self.objaverse_data_list is None or \
self.objaverse_data_list["image_list_cache_path"] == "None":
# This is too slow..
self.paths = sorted(list(Path(self.root_dir).rglob(f"*{self.target_name}*.{self.ext}")))
if len(self.paths) == 0:
# colmap format
self.paths = sorted(list(Path(self.root_dir).rglob(f"*images_train/*.*")))
else:
self.paths = get_rendered_objaverse_list_v0(self.root_dir, self.target_name, self.ext, **self.objaverse_data_list)
random.shuffle(self.paths)
# train val split
total_objects = len(self.paths)
self.paths_val = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
self.paths_train = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
if self.rank == 0:
print('============= length of dataset %d =============' % len(self.paths))
print('============= length of training dataset %d =============' % len(self.paths_train))
print('============= length of Validation dataset %d =============' % len(self.paths_val))
# Split into each GPU
self.paths_train = self._get_local_split(self.paths_train, self.world_size, self.rank)
logger.info(
f"[rank {self.rank}]: {len(self.paths_train)} images assigned."
)
def _get_tar_length(self, tar_list, img_per_obj):
dataset_size = 0
for _name in tar_list:
num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
dataset_size += num_obj * img_per_obj
return dataset_size
def webdataset_setup(self, list_dir, tar_dir, img_per_obj, max_tars=None):
# read data list and calculate size
tar_name_list = sorted(os.listdir(list_dir))
if not max_tars is None:
# for debugging on small scale data
tar_name_list = tar_name_list[:max_tars]
total_tars = len(tar_name_list)
# random shuffle
random.shuffle(tar_name_list)
print(f"Rank {self.rank} shuffle: {tar_name_list}")
# train test split
self.test_tars = tar_name_list[math.floor(total_tars / 100. * 99.):]
# make sure each node has one tar
if len(self.test_tars) < self.world_size:
self.test_tars += [self.test_tars[0]]*(self.world_size-len(self.test_tars))
self.train_tars = tar_name_list[:math.floor(total_tars / 100. * 99.)]
# training tar truncation
total_workers = self.num_workers * self.world_size
num_tars_train = (len(self.train_tars) // total_workers) * total_workers
if num_tars_train != len(self.train_tars):
print(f"[WARNING] Total train tars: {len(self.train_tars)}, truncated: {len(self.train_tars)-num_tars_train}, remainnig: {num_tars_train}, total workers: {total_workers}")
self.test_length = self._get_tar_length(self.test_tars, img_per_obj)
self.train_length = self._get_tar_length(self.train_tars, img_per_obj)
# name replace
test_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.test_tars]
self.test_tars = [os.path.join(tar_dir, _name) for _name in test_tars]
train_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.train_tars]
self.train_tars = [os.path.join(tar_dir, _name) for _name in train_tars]
if self.rank == 0:
print('============= length of dataset %d =============' % (self.test_length+self.train_length))
print('============= length of training dataset %d =============' % (self.train_length))
print('============= length of Validation dataset %d =============' % (self.test_length))
def setup(self, stage=None):
try:
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
except:
self.world_size = 1
self.rank = 0
if self.rank == 0:
print("#### Data ####")
if self.use_wds:
self.webdataset_setup(**self.tar_config)
else:
self.naive_setup()
def _get_local_split(self, items: list, world_size: int, rank: int, seed: int = 6):
"""The local rank only loads a split of the dataset."""
n_items = len(items)
items_permute = np.random.RandomState(seed).permutation(items)
if n_items % world_size == 0:
padded_items = items_permute
else:
padding = np.random.RandomState(seed).choice(
items, world_size - (n_items % world_size), replace=True
)
padded_items = np.concatenate([items_permute, padding])
assert (
len(padded_items) % world_size == 0
), f"len(padded_items): {len(padded_items)}; world_size: {world_size}; len(padding): {len(padding)}"
n_per_rank = len(padded_items) // world_size
local_items = padded_items[n_per_rank * rank : n_per_rank * (rank + 1)]
return local_items
def train_dataloader(self):
if self.use_wds:
loader = self.train_dataloader_wds()
else:
loader = self.train_dataloader_naive()
return loader
def val_dataloader(self):
if self.use_wds:
loader = self.val_dataloader_wds()
else:
loader = self.val_dataloader_naive()
return loader
def train_dataloader_naive(self):
dataset = ObjaverseData(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = self.paths_train, target_name=self.target_name,
**self.kwargs)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True)
def val_dataloader_naive(self):
dataset = ObjaverseData(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = self.paths_val, target_name=self.target_name,
**self.kwargs)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
def train_dataloader_wds(self):
decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = None, target_name=self.target_name,
**self.kwargs)
worker_batch = self.batch_size
epoch_length = self.train_length // worker_batch // self.num_workers // self.world_size
dataset = (wds.WebDataset(self.train_tars,
shardshuffle=min(1000, len(self.train_tars)),
nodesplitter=wds.shardlists.split_by_node)
.shuffle(5000, initial=1000)
.map(decoder.process_sample)
# .map(decoder.dict2tuple)
.batched(worker_batch, partial=False)
# .map(decoder.tuple2dict)
.map(decoder.batch_reordering)
.with_epoch(epoch_length)
.with_length(epoch_length)
)
loader = (wds.WebLoader(dataset, batch_size=None, num_workers=self.num_workers, shuffle=False)
# .unbatched()
# .shuffle(1000)
# .batched(self.batch_size)
# .map(decoder.tuple2dict)
)
print(f"# Training loader length for single worker {epoch_length} with {self.num_workers} workers")
return loader
def val_dataloader_wds(self):
decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
image_transforms=self.image_transforms,
image_list = None, target_name=self.target_name,
**self.kwargs)
# adjust worker number, as test has much much fewer tars
val_workers = min(self.num_workers, len(self.test_tars) // self.world_size)
epoch_length = max(self.test_length // self.batch_size // val_workers // self.world_size, 1)
dataset = (wds.WebDataset(self.test_tars,
shardshuffle=min(1000, len(self.test_tars)),
handler=wds.ignore_and_continue,
nodesplitter=wds.shardlists.split_by_node)
.shuffle(1000)
.map(decoder.process_sample)
# .map(decoder.dict2tuple)
.batched(self.batch_size, partial=False)
.with_epoch(epoch_length)
.with_length(epoch_length)
)
loader = (wds.WebLoader(dataset, batch_size=None, num_workers=val_workers, shuffle=False)
.unbatched()
.shuffle(1000)
.batched(self.batch_size)
# .map(decoder.tuple2dict)
.map(decoder.batch_reordering)
)
print(f"# Validation loader length for single worker {epoch_length} with {val_workers} workers")
return loader
def test_dataloader(self):
# testing will use all given data
return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, test=True,
image_transforms=self.image_transforms,
image_list = self.paths, target_name=self.target_name,
**self.kwargs),
batch_size=32, num_workers=self.num_workers, shuffle=False,
)
class ObjaverseData(ObjaverseDataDecoder, Dataset):
def __init__(self,
root_dir='.objaverse/hf-objaverse-v1/views',
image_list=None,
threads=64,
**kargs
) -> None:
"""Create a dataset from blender rendering results.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.paths = image_list
self.root_dir = Path(root_dir)
ObjaverseDataDecoder.__init__(self, **kargs)
# pre-load data
print(f"Data pre loading start with {threads}...")
self.all_target_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
self.all_cond_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
self.all_filename = ["empty"] * len(self.paths)
if self.condition_name == "normal":
self.all_normal_img = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
self.all_crop_idx = np.zeros((len(self.paths), 6), dtype=int) + 0
print("Array allocated..")
def parallel_load(index):
pbar.update(1)
self.preload_item(index)
pbar = tqdm(total=len(self.paths))
with ThreadPool(threads) as pool:
pool.map(parallel_load, range(len(self.paths)))
pool.close()
pool.join()
print("Data pre loading done...")
def __len__(self):
return len(self.paths)
def load_mask(self, mask_filename, cond_im):
# auto image file extention
glob_files = glob.glob(mask_filename.rsplit(".", 1)[0] + ".*")
if len(glob_files) == 0:
print("Warning: no mask image find")
img_mask = np.ones_like(cond_im)
if cond_im.shape[-1] == 4:
print("Use image mask")
img_mask = img_mask * cond_im[:, :, -1:]
elif len(glob_files) == 1:
img_mask = np.array(self.normalized_read(glob_files[0]))
else:
raise NotImplementedError("Too many mask images found! {}")
return img_mask
def preload_item(self, index):
path = self.paths[index]
filename = os.path.join(path)
filename, condition_filename, \
mask_filename, normal_condition_filename, filename_targets = self.path_parsing(filename)
# get file streams
if filename_targets is None:
filename_read = filename
else:
filename_read = filename_targets
# image reading
target_im, cond_im, normal_img = self.read_images(filename_read,
condition_filename, normal_condition_filename)
# mask reading
img_mask = self.load_mask(mask_filename, cond_im)
# post processing
target_im, cond_im, normal_img, crop_idx = self.image_post_processing(img_mask, target_im, cond_im, normal_img)
if self.test:
# crop out valid_mask
self.all_crop_idx[index] = crop_idx
# put results
self.all_target_im[index] = target_im
self.all_cond_im[index] = cond_im
self.all_filename[index] = filename
if self.condition_name == "normal":
self.all_normal_img[index] = normal_img
def get_camera(self, input_filename):
camera_file = input_filename.replace(f'{self.target_name}0001', \
'camera').rsplit(".")[0] + ".pkl"
cam_dir, cam_name = camera_file.rsplit("/", 1)
cam_name = f"{cam_name:>15}"
camera_file = os.path.join(cam_dir, cam_name)
cam = pickle.load(open(camera_file, 'rb'))
return cam
def __getitem__(self, index):
target_im = self.process_im(self.all_target_im[index])
cond_img = self.process_im(self.all_cond_im[index])
filename = self.all_filename[index]
normal_img = self.process_im(self.all_normal_img[index]) \
if self.condition_name == "normal" \
else None
sample = self.parse_item(target_im, cond_img, normal_img, filename)
if self.test:
sample["crop_idx"] = self.all_crop_idx[index]
return sample
if __name__ == "__main__":
import pyhocon
class DictAsMember(dict):
def __getattr__(self, name):
value = self[name]
if isinstance(value, dict):
value = DictAsMember(value)
return value
def ConfigAsMember(config):
config_dict = DictAsMember(config)
for key in config_dict.keys():
if isinstance(config_dict[key], pyhocon.config_tree.ConfigTree):
config_dict[key] = ConfigAsMember(config_dict[key])
return config_dict
train_config = DictAsMember({
"validation": False,
"image_transforms": {"size": 256}
})
val_config = DictAsMember({
"validation": True,
"image_transforms": {"size": 256}
})
objaverse_data_list = DictAsMember({
"image_list_cache_path": "image_lists/half_400000_image_list.npz",
})
data_module = ObjaverseDataModuleFromConfig(root_dir='/mnt/volumes/perception/hujunkang/codes/renders/material-diffusion/data/objaverse_rendering',
batch_size=4, train=train_config, validation=val_config,
test=None, num_workers=1, objaverse_data_list=objaverse_data_list, ext="png",
target_name="albedo", use_wds=False, tar_config=None)
data_module.setup()
train_dataloader_naive = data_module.train_dataloader_naive() |