File size: 22,697 Bytes
d72c37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

import sys
sys.path.insert(1, '.')
from typing import Dict
import webdataset as wds
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
import torchvision
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
import pytorch_lightning as pl
import copy
import csv
import cv2
import random
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import json
import os, sys
import webdataset as wds
import math
from torch.utils.data.distributed import DistributedSampler
import glob
import pickle
from ldm.data.objaverse_rendered import get_rendered_objaverse_list_v0
from ldm.data.decoder import ObjaverseDataDecoder, ObjaverseDecoerWDS, nodesplitter

from loguru import logger
from torch import distributed as dist
from tqdm import tqdm
from multiprocessing.pool import ThreadPool


# Some hacky things to make experimentation easier
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
    ds = make_multi_folder_data(paths, caption_files, **kwargs)
    return TransformDataset(ds)

def make_nfp_data(base_path):
    dirs = list(Path(base_path).glob("*/"))
    print(f"Found {len(dirs)} folders")
    print(dirs)
    tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
    datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
    return torch.utils.data.ConcatDataset(datasets)


class VideoDataset(Dataset):
    def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
        self.root_dir = Path(root_dir)
        self.caption_file = caption_file
        self.n = n
        ext = "mp4"
        self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
        self.offset = offset

        if isinstance(image_transforms, ListConfig):
            image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
        image_transforms.extend([transforms.ToTensor(),
                                 transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
        image_transforms = transforms.Compose(image_transforms)
        self.tform = image_transforms
        with open(self.caption_file) as f:
            reader = csv.reader(f)
            rows = [row for row in reader]
        self.captions = dict(rows)

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, index):
        for i in range(10):
            try:
                return self._load_sample(index)
            except Exception:
                # Not really good enough but...
                print("uh oh")

    def _load_sample(self, index):
        n = self.n
        filename = self.paths[index]
        min_frame = 2*self.offset + 2
        vid = cv2.VideoCapture(str(filename))
        max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
        curr_frame_n = random.randint(min_frame, max_frames)
        vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
        _, curr_frame = vid.read()

        prev_frames = []
        for i in range(n):
            prev_frame_n = curr_frame_n - (i+1)*self.offset
            vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
            _, prev_frame = vid.read()
            prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
            prev_frames.append(prev_frame)

        vid.release()
        caption = self.captions[filename.name]
        data = {
            "image": self.tform(Image.fromarray(curr_frame[...,::-1])),
            "prev": torch.cat(prev_frames, dim=-1),
            "txt": caption
        }
        return data

# end hacky things


def make_tranforms(image_transforms):
    # if isinstance(image_transforms, ListConfig):
    #     image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
    image_transforms = []
    image_transforms.extend([transforms.ToTensor(),
                                transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
    image_transforms = transforms.Compose(image_transforms)
    return image_transforms


def make_multi_folder_data(paths, caption_files=None, **kwargs):
    """Make a concat dataset from multiple folders
    Don't suport captions yet

    If paths is a list, that's ok, if it's a Dict interpret it as:
    k=folder v=n_times to repeat that
    """
    list_of_paths = []
    if isinstance(paths, (Dict, DictConfig)):
        assert caption_files is None, \
            "Caption files not yet supported for repeats"
        for folder_path, repeats in paths.items():
            list_of_paths.extend([folder_path]*repeats)
        paths = list_of_paths

    if caption_files is not None:
        datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
    else:
        datasets = [FolderData(p, **kwargs) for p in paths]
    return torch.utils.data.ConcatDataset(datasets)



class NfpDataset(Dataset):
    def __init__(self,
        root_dir,
        image_transforms=[],
        ext="jpg",
        default_caption="",
        ) -> None:
        """assume sequential frames and a deterministic transform"""

        self.root_dir = Path(root_dir)
        self.default_caption = default_caption

        self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
        self.tform = make_tranforms(image_transforms)

    def __len__(self):
        return len(self.paths) - 1


    def __getitem__(self, index):
        prev = self.paths[index]
        curr = self.paths[index+1]
        data = {}
        data["image"] = self._load_im(curr)
        data["prev"] = self._load_im(prev)
        data["txt"] = self.default_caption
        return data

    def _load_im(self, filename):
        im = Image.open(filename).convert("RGB")
        return self.tform(im)

class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
    def __init__(self, root_dir, batch_size, train=None, validation=None,
                 test=None, num_workers=4, objaverse_data_list=None, ext="png", 
                 target_name="albedo", use_wds=True, tar_config=None, **kwargs):
        super().__init__(self)
        self.root_dir = root_dir
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.kwargs = kwargs
        self.tar_config = tar_config
        self.use_wds = use_wds

        if train is not None:
            dataset_config = train
        if validation is not None:
            dataset_config = validation


        image_transforms = [transforms.ToTensor(),
                                transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
        image_transforms = torchvision.transforms.Compose(image_transforms)
        self.image_transforms = {
            "size": dataset_config.image_transforms.size,
            "totensor": image_transforms
        }

        self.target_name = target_name
        self.objaverse_data_list = objaverse_data_list
        self.ext = ext

    def naive_setup(self):
        # get object data list
        if self.objaverse_data_list is None or \
                          self.objaverse_data_list["image_list_cache_path"] == "None":
            # This is too slow..
            self.paths = sorted(list(Path(self.root_dir).rglob(f"*{self.target_name}*.{self.ext}")))
            if len(self.paths) == 0:
                # colmap format
                self.paths = sorted(list(Path(self.root_dir).rglob(f"*images_train/*.*")))
        else:      
            self.paths = get_rendered_objaverse_list_v0(self.root_dir, self.target_name, self.ext, **self.objaverse_data_list)
        random.shuffle(self.paths)
        # train val split
        total_objects = len(self.paths)
        self.paths_val = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
        self.paths_train = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
        if self.rank == 0:
            print('============= length of dataset %d =============' % len(self.paths))
            print('============= length of training dataset %d =============' % len(self.paths_train))
            print('============= length of Validation dataset %d =============' % len(self.paths_val))

        # Split into each GPU
        self.paths_train = self._get_local_split(self.paths_train, self.world_size, self.rank)
        logger.info(
            f"[rank {self.rank}]: {len(self.paths_train)} images assigned."
        )

    def _get_tar_length(self, tar_list, img_per_obj):
        dataset_size = 0
        for _name in tar_list:
            num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
            dataset_size += num_obj * img_per_obj
        return dataset_size

    def webdataset_setup(self, list_dir, tar_dir, img_per_obj, max_tars=None):
        # read data list and calculate size
        tar_name_list = sorted(os.listdir(list_dir))
        if not max_tars is None:
            # for debugging on small scale data
            tar_name_list = tar_name_list[:max_tars]
        total_tars = len(tar_name_list)
        # random shuffle
        random.shuffle(tar_name_list)
        print(f"Rank {self.rank} shuffle: {tar_name_list}")
        # train test split
        self.test_tars = tar_name_list[math.floor(total_tars / 100. * 99.):]
        # make sure each node has one tar
        if len(self.test_tars) < self.world_size:
            self.test_tars += [self.test_tars[0]]*(self.world_size-len(self.test_tars))

        self.train_tars = tar_name_list[:math.floor(total_tars / 100. * 99.)]

        # training tar truncation
        total_workers = self.num_workers * self.world_size
        num_tars_train = (len(self.train_tars) // total_workers) * total_workers
        if num_tars_train != len(self.train_tars):
            print(f"[WARNING] Total train tars: {len(self.train_tars)}, truncated: {len(self.train_tars)-num_tars_train}, remainnig: {num_tars_train}, total workers: {total_workers}")

        self.test_length = self._get_tar_length(self.test_tars, img_per_obj)
        self.train_length = self._get_tar_length(self.train_tars, img_per_obj)

        # name replace
        test_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.test_tars]
        self.test_tars = [os.path.join(tar_dir, _name) for _name in test_tars]

        train_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.train_tars]
        self.train_tars = [os.path.join(tar_dir, _name) for _name in train_tars]

        if self.rank == 0:
            print('============= length of dataset %d =============' % (self.test_length+self.train_length))
            print('============= length of training dataset %d =============' % (self.train_length))
            print('============= length of Validation dataset %d =============' % (self.test_length))

    def setup(self, stage=None):
        try:
            self.world_size = dist.get_world_size()
            self.rank = dist.get_rank()
        except:
            self.world_size = 1
            self.rank = 0
    
        if self.rank == 0:
            print("#### Data ####")
        
        if self.use_wds:
            self.webdataset_setup(**self.tar_config)
        else:
            self.naive_setup()

    def _get_local_split(self, items: list, world_size: int, rank: int, seed: int = 6):
        """The local rank only loads a split of the dataset."""
        n_items = len(items)
        items_permute = np.random.RandomState(seed).permutation(items)
        if n_items % world_size == 0:
            padded_items = items_permute
        else:
            padding = np.random.RandomState(seed).choice(
                items, world_size - (n_items % world_size), replace=True
            )
            padded_items = np.concatenate([items_permute, padding])
            assert (
                len(padded_items) % world_size == 0
            ), f"len(padded_items): {len(padded_items)}; world_size: {world_size}; len(padding): {len(padding)}"
        n_per_rank = len(padded_items) // world_size
        local_items = padded_items[n_per_rank * rank : n_per_rank * (rank + 1)]

        return local_items

    def train_dataloader(self):
        if self.use_wds:
            loader = self.train_dataloader_wds()
        else:
            loader = self.train_dataloader_naive()
        return loader

    def val_dataloader(self):
        if self.use_wds:
            loader = self.val_dataloader_wds()
        else:
            loader = self.val_dataloader_naive()
        return loader
        
    def train_dataloader_naive(self):
        dataset = ObjaverseData(root_dir=self.root_dir, \
                                image_transforms=self.image_transforms,
                                image_list = self.paths_train, target_name=self.target_name,
                                **self.kwargs)
        return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True)

    def val_dataloader_naive(self):
        dataset = ObjaverseData(root_dir=self.root_dir, \
                                image_transforms=self.image_transforms,
                                image_list = self.paths_val, target_name=self.target_name,
                                **self.kwargs)
        return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
    

    def train_dataloader_wds(self):
        decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
                                image_transforms=self.image_transforms,
                                image_list = None, target_name=self.target_name,
                                **self.kwargs)

        worker_batch = self.batch_size
        epoch_length = self.train_length // worker_batch // self.num_workers // self.world_size
        dataset = (wds.WebDataset(self.train_tars,
                                  shardshuffle=min(1000, len(self.train_tars)),
                                  nodesplitter=wds.shardlists.split_by_node)
                    .shuffle(5000, initial=1000)
                    .map(decoder.process_sample)
                    # .map(decoder.dict2tuple)
                    .batched(worker_batch, partial=False)
                    # .map(decoder.tuple2dict)
                    .map(decoder.batch_reordering)
                    .with_epoch(epoch_length)
                    .with_length(epoch_length)
        )
        loader = (wds.WebLoader(dataset, batch_size=None, num_workers=self.num_workers, shuffle=False)
            # .unbatched()
            # .shuffle(1000)
            # .batched(self.batch_size)
            # .map(decoder.tuple2dict)
        )

        print(f"# Training loader length for single worker {epoch_length} with {self.num_workers} workers")

        return loader

    def val_dataloader_wds(self):
        decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
                                image_transforms=self.image_transforms,
                                image_list = None, target_name=self.target_name,
                                **self.kwargs)

        # adjust worker number, as test has much much fewer tars
        val_workers = min(self.num_workers, len(self.test_tars) // self.world_size)
        epoch_length = max(self.test_length // self.batch_size // val_workers // self.world_size, 1)
        dataset = (wds.WebDataset(self.test_tars,
                                  shardshuffle=min(1000, len(self.test_tars)),
                                  handler=wds.ignore_and_continue,
                                  nodesplitter=wds.shardlists.split_by_node)
                    .shuffle(1000)
                    .map(decoder.process_sample)
                    # .map(decoder.dict2tuple)
                    .batched(self.batch_size, partial=False)
                    .with_epoch(epoch_length)
                    .with_length(epoch_length)
        )
        loader = (wds.WebLoader(dataset, batch_size=None, num_workers=val_workers, shuffle=False)
            .unbatched()
            .shuffle(1000)
            .batched(self.batch_size)
            # .map(decoder.tuple2dict)
            .map(decoder.batch_reordering)
            )

        print(f"# Validation loader length for single worker {epoch_length} with {val_workers} workers")

        return loader
        
    def test_dataloader(self):
        # testing will use all given data
        return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, test=True, 
                                           image_transforms=self.image_transforms,
                                           image_list = self.paths, target_name=self.target_name,
                                           **self.kwargs),
                          batch_size=32, num_workers=self.num_workers, shuffle=False,
                          )


class ObjaverseData(ObjaverseDataDecoder, Dataset):
    def __init__(self,
        root_dir='.objaverse/hf-objaverse-v1/views',
        image_list=None,
        threads=64,
        **kargs
        ) -> None:
        """Create a dataset from blender rendering results.
        If you pass in a root directory it will be searched for images
        ending in ext (ext can be a list)
        """
        self.paths = image_list
        self.root_dir = Path(root_dir)
        ObjaverseDataDecoder.__init__(self, **kargs)
        # pre-load data
        print(f"Data pre loading start with {threads}...")
        self.all_target_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
        self.all_cond_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
        self.all_filename = ["empty"] * len(self.paths)
        if self.condition_name == "normal":
            self.all_normal_img = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
        self.all_crop_idx = np.zeros((len(self.paths), 6), dtype=int) + 0

        print("Array allocated..")

        def parallel_load(index):
            pbar.update(1)
            self.preload_item(index)

        pbar = tqdm(total=len(self.paths))
        with ThreadPool(threads) as pool:
            pool.map(parallel_load, range(len(self.paths)))
            pool.close()
            pool.join()

        print("Data pre loading done...")

    def __len__(self):
        return len(self.paths)
        
    def load_mask(self, mask_filename, cond_im):
        # auto image file extention
        glob_files = glob.glob(mask_filename.rsplit(".", 1)[0] + ".*")
        if len(glob_files) == 0:
            print("Warning: no mask image find")
            img_mask = np.ones_like(cond_im)

            if cond_im.shape[-1] == 4:
                print("Use image mask")
                img_mask = img_mask * cond_im[:, :, -1:]
        elif len(glob_files) == 1:
            img_mask = np.array(self.normalized_read(glob_files[0]))
        else:
            raise NotImplementedError("Too many mask images found! {}")
        return img_mask
    
    def preload_item(self, index):
        path = self.paths[index]
        filename = os.path.join(path)
        filename, condition_filename, \
            mask_filename, normal_condition_filename, filename_targets = self.path_parsing(filename)

        # get file streams
        if filename_targets is None:
            filename_read = filename
        else:
            filename_read = filename_targets

        # image reading
        target_im, cond_im, normal_img = self.read_images(filename_read, 
                                                         condition_filename, normal_condition_filename)

        # mask reading
        img_mask = self.load_mask(mask_filename, cond_im)

        # post processing
        target_im, cond_im, normal_img, crop_idx = self.image_post_processing(img_mask, target_im, cond_im, normal_img)
        if self.test:
            # crop out valid_mask
            self.all_crop_idx[index] = crop_idx

        # put results
        self.all_target_im[index] = target_im
        self.all_cond_im[index] = cond_im
        self.all_filename[index] = filename
        if self.condition_name == "normal":
            self.all_normal_img[index] = normal_img

    def get_camera(self, input_filename):
        camera_file = input_filename.replace(f'{self.target_name}0001', \
                                             'camera').rsplit(".")[0] + ".pkl"
        cam_dir, cam_name = camera_file.rsplit("/", 1)
        cam_name = f"{cam_name:>15}"
        camera_file = os.path.join(cam_dir, cam_name)
        cam = pickle.load(open(camera_file, 'rb'))
        return cam
    
    
    def __getitem__(self, index):
        target_im = self.process_im(self.all_target_im[index])
        cond_img = self.process_im(self.all_cond_im[index])
        filename = self.all_filename[index]
        normal_img = self.process_im(self.all_normal_img[index]) \
            if self.condition_name == "normal" \
                else None

        sample = self.parse_item(target_im, cond_img, normal_img, filename)
        if self.test:
            sample["crop_idx"] = self.all_crop_idx[index]
        return sample


if __name__ == "__main__":
    import pyhocon

    class DictAsMember(dict):
        def __getattr__(self, name):
            value = self[name]
            if isinstance(value, dict):
                value = DictAsMember(value)
            return value
        
    def ConfigAsMember(config):
        config_dict = DictAsMember(config)
        for key in config_dict.keys():
            if isinstance(config_dict[key], pyhocon.config_tree.ConfigTree):
                config_dict[key] = ConfigAsMember(config_dict[key])
        return config_dict

    train_config = DictAsMember({
        "validation": False,
        "image_transforms": {"size": 256}
        })
    val_config = DictAsMember({
        "validation": True,
        "image_transforms": {"size": 256}
        })
    objaverse_data_list = DictAsMember({
        "image_list_cache_path": "image_lists/half_400000_image_list.npz",
        })
    data_module = ObjaverseDataModuleFromConfig(root_dir='/mnt/volumes/perception/hujunkang/codes/renders/material-diffusion/data/objaverse_rendering', 
    batch_size=4, train=train_config, validation=val_config,
                 test=None, num_workers=1, objaverse_data_list=objaverse_data_list, ext="png", 
                 target_name="albedo", use_wds=False, tar_config=None)

    data_module.setup()
    train_dataloader_naive = data_module.train_dataloader_naive()