Spaces:
Running
Running
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323 | |
4-bit GPTQ models reduce VRAM usage by about 75%. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU. | |
## Overview | |
There are two ways of loading GPTQ models in the web UI at the moment: | |
* Using AutoGPTQ: | |
* supports more models | |
* standardized (no need to guess any parameter) | |
* is a proper Python library | |
* ~no wheels are presently available so it requires manual compilation~ | |
* supports loading both triton and cuda models | |
* Using GPTQ-for-LLaMa directly: | |
* faster CPU offloading | |
* faster multi-GPU inference | |
* supports loading LoRAs using a monkey patch | |
* requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it | |
* supports either only cuda or only triton depending on the branch | |
For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ | |
## AutoGPTQ | |
### Installation | |
No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands: | |
``` | |
conda activate textgen | |
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ | |
pip install . | |
``` | |
The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)). | |
### Usage | |
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag: | |
``` | |
python server.py --autogptq --model model_name | |
``` | |
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model. | |
### Offloading | |
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA. | |
For CPU offloading: | |
``` | |
python server.py --autogptq --gpu-memory 3000MiB --model model_name | |
``` | |
For multi-GPU inference: | |
``` | |
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name | |
``` | |
### Using LoRAs with AutoGPTQ | |
Works fine for a single LoRA. | |
## GPTQ-for-LLaMa | |
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa | |
A Python package containing both major CUDA versions of GPTQ-for-LLaMa is used to simplify installation and compatibility: https://github.com/jllllll/GPTQ-for-LLaMa-CUDA | |
### Precompiled wheels | |
Kindly provided by our friend jllllll: https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases | |
Wheels are included in requirements.txt and are installed with the webui on supported systems. | |
### Manual installation | |
#### Step 1: install nvcc | |
``` | |
conda activate textgen | |
conda install cuda -c nvidia/label/cuda-11.7.1 | |
``` | |
The command above takes some 10 minutes to run and shows no progress bar or updates along the way. | |
You are also going to need to have a C++ compiler installed. On Linux, `sudo apt install build-essential` or equivalent is enough. On Windows, Visual Studio or Visual Studio Build Tools is required. | |
If you're using an older version of CUDA toolkit (e.g. 11.7) but the latest version of `gcc` and `g++` (12.0+) on Linux, you should downgrade with: `conda install -c conda-forge gxx==11.3.0`. Kernel compilation will fail otherwise. | |
#### Step 2: compile the CUDA extensions | |
``` | |
python -m pip install git+https://github.com/jllllll/GPTQ-for-LLaMa-CUDA -v | |
``` | |
### Getting pre-converted LLaMA weights | |
* Direct download (recommended): | |
https://huggingface.co/Neko-Institute-of-Science/LLaMA-7B-4bit-128g | |
https://huggingface.co/Neko-Institute-of-Science/LLaMA-13B-4bit-128g | |
https://huggingface.co/Neko-Institute-of-Science/LLaMA-30B-4bit-128g | |
https://huggingface.co/Neko-Institute-of-Science/LLaMA-65B-4bit-128g | |
These models were converted with `desc_act=True`. They work just fine with ExLlama. For AutoGPTQ, they will only work on Linux with the `triton` option checked. | |
* Torrent: | |
https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617 | |
https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105 | |
These models were converted with `desc_act=False`. As such, they are less accurate, but they work with AutoGPTQ on Windows. The `128g` versions are better from 13b upwards, and worse for 7b. The tokenizer files in the torrents are outdated, in particular the files called `tokenizer_config.json` and `special_tokens_map.json`. Here you can find those files: https://huggingface.co/oobabooga/llama-tokenizer | |
### Starting the web UI: | |
Use the `--gptq-for-llama` flag. | |
For the models converted without `group-size`: | |
``` | |
python server.py --model llama-7b-4bit --gptq-for-llama | |
``` | |
For the models converted with `group-size`: | |
``` | |
python server.py --model llama-13b-4bit-128g --gptq-for-llama --wbits 4 --groupsize 128 | |
``` | |
The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names in many cases. | |
### CPU offloading | |
It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU. | |
With this command, I can run llama-7b with 4GB VRAM: | |
``` | |
python server.py --model llama-7b-4bit --pre_layer 20 | |
``` | |
This is the performance: | |
``` | |
Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens) | |
``` | |
You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU. | |
### Using LoRAs with GPTQ-for-LLaMa | |
This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit | |
To use it: | |
1. Install alpaca_lora_4bit using pip | |
``` | |
git clone https://github.com/johnsmith0031/alpaca_lora_4bit.git | |
cd alpaca_lora_4bit | |
git fetch origin winglian-setup_pip | |
git checkout winglian-setup_pip | |
pip install . | |
``` | |
2. Start the UI with the `--monkey-patch` flag: | |
``` | |
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch | |
``` | |