Spaces:
Running
Running
# LoRA | |
LoRA (Low-Rank Adaptation) is an extremely powerful method for customizing a base model by training only a small number of parameters. They can be attached to models at runtime. | |
For instance, a 50mb LoRA can teach LLaMA an entire new language, a given writing style, or give it instruction-following or chat abilities. | |
This is the current state of LoRA integration in the web UI: | |
|Loader | Status | | |
|--------|------| | |
| Transformers | Full support in 16-bit, `--load-in-8bit`, `--load-in-4bit`, and CPU modes. | | |
| ExLlama | Single LoRA support. Fast to remove the LoRA afterwards. | | |
| AutoGPTQ | Single LoRA support. Removing the LoRA requires reloading the entire model.| | |
| GPTQ-for-LLaMa | Full support with the [monkey patch](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#using-loras-with-gptq-for-llama). | | |
## Downloading a LoRA | |
The download script can be used. For instance: | |
``` | |
python download-model.py tloen/alpaca-lora-7b | |
``` | |
The files will be saved to `loras/tloen_alpaca-lora-7b`. | |
## Using the LoRA | |
The `--lora` command-line flag can be used. Examples: | |
``` | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-8bit | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-4bit | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --cpu | |
``` | |
Instead of using the `--lora` command-line flag, you can also select the LoRA in the "Parameters" tab of the interface. | |
## Prompt | |
For the Alpaca LoRA in particular, the prompt must be formatted like this: | |
``` | |
Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
Write a Python script that generates text using the transformers library. | |
### Response: | |
``` | |
Sample output: | |
``` | |
Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
Write a Python script that generates text using the transformers library. | |
### Response: | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
model = AutoModelForCausalLM.from_pretrained("bert-base-uncased") | |
texts = ["Hello world", "How are you"] | |
for sentence in texts: | |
sentence = tokenizer(sentence) | |
print(f"Generated {len(sentence)} tokens from '{sentence}'") | |
output = model(sentences=sentence).predict() | |
print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}") | |
``` | |
## Training a LoRA | |
You can train your own LoRAs from the `Training` tab. See [Training LoRAs](Training-LoRAs.md) for details. | |