Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
from transformers import pipeline, set_seed
|
4 |
|
5 |
# Setzen eines Seeds für Reproduzierbarkeit
|
6 |
set_seed(42)
|
7 |
|
8 |
-
# Laden des GPT-Modells mit Hugging Face Pipeline
|
9 |
-
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
10 |
tokenizer = model.tokenizer
|
11 |
|
12 |
def generate_text(input_text, temp, top_k, top_p, length):
|
13 |
-
# Konvertieren des Eingabetextes in Token-IDs
|
14 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
-
|
16 |
-
# Erstellung der Attention-Mask
|
17 |
-
attention_mask = torch.ones(input_ids.shape, dtype=torch.bool)
|
18 |
-
|
19 |
-
# Einstellung der maximalen Länge
|
20 |
-
max_length = model.model.config.n_positions if len(input_ids[0]) > model.model.config.n_positions else len(input_ids[0]) + length
|
21 |
-
|
22 |
# Textgenerierung mit spezifischen Parametern
|
23 |
-
|
24 |
-
|
25 |
-
attention_mask=attention_mask,
|
26 |
-
max_length=max_length,
|
27 |
-
min_length=4,
|
28 |
-
num_beams=5,
|
29 |
-
no_repeat_ngram_size=2,
|
30 |
-
early_stopping=True,
|
31 |
-
temperature=temp,
|
32 |
-
top_p=top_p,
|
33 |
-
top_k=top_k,
|
34 |
-
length_penalty=2.0,
|
35 |
-
do_sample=True,
|
36 |
-
eos_token_id=tokenizer.eos_token_id,
|
37 |
-
pad_token_id=tokenizer.eos_token_id
|
38 |
-
)
|
39 |
-
|
40 |
-
# Konvertieren der generierten Token-IDs zurück in Text
|
41 |
-
return tokenizer.decode(beam_output[0], skip_special_tokens=True)
|
42 |
|
43 |
def chat_with_model(user_input, history, temperature, top_k, top_p, length, system_prompt):
|
44 |
combined_input = f"{history}\nNutzer: {user_input}\n{system_prompt}:"
|
@@ -49,15 +22,17 @@ def chat_with_model(user_input, history, temperature, top_k, top_p, length, syst
|
|
49 |
# Erstellen der Gradio-Schnittstelle
|
50 |
with gr.Blocks() as demo:
|
51 |
with gr.Row():
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
temperature = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperature", value=0.9)
|
57 |
top_k = gr.Slider(minimum=0, maximum=100, step=1, label="Top K", value=50)
|
58 |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top P", value=0.9)
|
59 |
length = gr.Slider(minimum=1, maximum=100, step=1, label="Länge", value=20)
|
60 |
-
|
61 |
submit_btn.click(
|
62 |
chat_with_model,
|
63 |
inputs=[user_input, history, temperature, top_k, top_p, length, system_prompt],
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline, set_seed
|
3 |
|
4 |
# Setzen eines Seeds für Reproduzierbarkeit
|
5 |
set_seed(42)
|
6 |
|
7 |
+
# Laden des GPT-Modells mit Hugging Face Pipeline für CPU
|
8 |
+
model = pipeline("text-generation", model="Loewolf/GPT_1", device=-1) # device=-1 für CPU
|
9 |
tokenizer = model.tokenizer
|
10 |
|
11 |
def generate_text(input_text, temp, top_k, top_p, length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Textgenerierung mit spezifischen Parametern
|
13 |
+
generated_texts = model(input_text, max_length=length, temperature=temp, top_k=top_k, top_p=top_p, num_return_sequences=1)
|
14 |
+
return generated_texts[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def chat_with_model(user_input, history, temperature, top_k, top_p, length, system_prompt):
|
17 |
combined_input = f"{history}\nNutzer: {user_input}\n{system_prompt}:"
|
|
|
22 |
# Erstellen der Gradio-Schnittstelle
|
23 |
with gr.Blocks() as demo:
|
24 |
with gr.Row():
|
25 |
+
with gr.Column():
|
26 |
+
history = gr.Textbox(label="Chatverlauf", lines=10, interactive=False)
|
27 |
+
user_input = gr.Textbox(label="Deine Nachricht")
|
28 |
+
submit_btn = gr.Button("Senden")
|
29 |
+
with gr.Column():
|
30 |
+
system_prompt = gr.Textbox(label="System Prompt", value="Löwolf GPT")
|
31 |
temperature = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperature", value=0.9)
|
32 |
top_k = gr.Slider(minimum=0, maximum=100, step=1, label="Top K", value=50)
|
33 |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top P", value=0.9)
|
34 |
length = gr.Slider(minimum=1, maximum=100, step=1, label="Länge", value=20)
|
35 |
+
|
36 |
submit_btn.click(
|
37 |
chat_with_model,
|
38 |
inputs=[user_input, history, temperature, top_k, top_p, length, system_prompt],
|