Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline, set_seed
|
3 |
|
4 |
# Setzen eines Seeds für Reproduzierbarkeit
|
@@ -8,46 +9,62 @@ set_seed(42)
|
|
8 |
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
9 |
tokenizer = model.tokenizer
|
10 |
|
11 |
-
def generate_text(input_text,
|
12 |
-
# Anpassen des Eingabetextes mit System-Prompt, falls vorhanden
|
13 |
-
adjusted_input_text = system_prompt + input_text if system_prompt else input_text
|
14 |
-
|
15 |
# Konvertieren des Eingabetextes in Token-IDs
|
16 |
-
input_ids = tokenizer.encode(
|
|
|
|
|
|
|
17 |
|
18 |
# Einstellung der maximalen Länge
|
19 |
-
max_length =
|
20 |
|
21 |
# Textgenerierung mit spezifischen Parametern
|
22 |
-
|
23 |
input_ids,
|
|
|
24 |
max_length=max_length,
|
25 |
-
|
26 |
-
|
27 |
-
top_p=top_p,
|
28 |
no_repeat_ngram_size=2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
pad_token_id=tokenizer.eos_token_id
|
30 |
)
|
31 |
|
32 |
# Konvertieren der generierten Token-IDs zurück in Text
|
33 |
-
return tokenizer.decode(
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Erstellen der Gradio-Schnittstelle
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
gr.
|
40 |
-
gr.
|
41 |
-
gr.
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
# Starten der Gradio-App
|
51 |
-
|
52 |
|
53 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import pipeline, set_seed
|
4 |
|
5 |
# Setzen eines Seeds für Reproduzierbarkeit
|
|
|
9 |
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
10 |
tokenizer = model.tokenizer
|
11 |
|
12 |
+
def generate_text(input_text, temp, top_k, top_p, length):
|
|
|
|
|
|
|
13 |
# Konvertieren des Eingabetextes in Token-IDs
|
14 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
+
|
16 |
+
# Erstellung der Attention-Mask
|
17 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.bool)
|
18 |
|
19 |
# Einstellung der maximalen Länge
|
20 |
+
max_length = model.model.config.n_positions if len(input_ids[0]) > model.model.config.n_positions else len(input_ids[0]) + length
|
21 |
|
22 |
# Textgenerierung mit spezifischen Parametern
|
23 |
+
beam_output = model.model.generate(
|
24 |
input_ids,
|
25 |
+
attention_mask=attention_mask,
|
26 |
max_length=max_length,
|
27 |
+
min_length=4,
|
28 |
+
num_beams=5,
|
|
|
29 |
no_repeat_ngram_size=2,
|
30 |
+
early_stopping=True,
|
31 |
+
temperature=temp,
|
32 |
+
top_p=top_p,
|
33 |
+
top_k=top_k,
|
34 |
+
length_penalty=2.0,
|
35 |
+
do_sample=True,
|
36 |
+
eos_token_id=tokenizer.eos_token_id,
|
37 |
pad_token_id=tokenizer.eos_token_id
|
38 |
)
|
39 |
|
40 |
# Konvertieren der generierten Token-IDs zurück in Text
|
41 |
+
return tokenizer.decode(beam_output[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
def chat_with_model(user_input, history, temperature, top_k, top_p, length, system_prompt):
|
44 |
+
combined_input = f"{history}\nNutzer: {user_input}\n{system_prompt}:"
|
45 |
+
response = generate_text(combined_input, temperature, top_k, top_p, length)
|
46 |
+
new_history = f"{combined_input}\n{response}"
|
47 |
+
return "", new_history # Leerer String für user_input, um das Eingabefeld zurückzusetzen
|
48 |
|
49 |
# Erstellen der Gradio-Schnittstelle
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
with gr.Row():
|
52 |
+
history = gr.Textbox(label="Chatverlauf", lines=10, interactive=False)
|
53 |
+
user_input = gr.Textbox(label="Deine Nachricht")
|
54 |
+
system_prompt = gr.Textbox(label="System Prompt", value="Löwolf GPT")
|
55 |
+
with gr.Column(scale=1):
|
56 |
+
temperature = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperature", value=0.9)
|
57 |
+
top_k = gr.Slider(minimum=0, maximum=100, step=1, label="Top K", value=50)
|
58 |
+
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, label="Top P", value=0.9)
|
59 |
+
length = gr.Slider(minimum=1, maximum=100, step=1, label="Länge", value=20)
|
60 |
+
submit_btn = gr.Button("Senden")
|
61 |
+
submit_btn.click(
|
62 |
+
chat_with_model,
|
63 |
+
inputs=[user_input, history, temperature, top_k, top_p, length, system_prompt],
|
64 |
+
outputs=[user_input, history]
|
65 |
+
)
|
66 |
|
67 |
# Starten der Gradio-App
|
68 |
+
demo.launch()
|
69 |
|
70 |
|