Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
from transformers import pipeline, set_seed
|
4 |
|
5 |
# Setzen eines Seeds für Reproduzierbarkeit
|
@@ -9,43 +8,46 @@ set_seed(42)
|
|
9 |
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
10 |
tokenizer = model.tokenizer
|
11 |
|
12 |
-
def generate_text(input_text):
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
|
19 |
# Einstellung der maximalen Länge
|
20 |
-
max_length =
|
21 |
|
22 |
# Textgenerierung mit spezifischen Parametern
|
23 |
-
|
24 |
input_ids,
|
25 |
-
attention_mask=attention_mask,
|
26 |
max_length=max_length,
|
27 |
-
|
28 |
-
|
|
|
29 |
no_repeat_ngram_size=2,
|
30 |
-
early_stopping=True,
|
31 |
-
temperature=0.9,
|
32 |
-
top_p=0.90,
|
33 |
-
top_k=50,
|
34 |
-
length_penalty=2.0,
|
35 |
-
do_sample=True,
|
36 |
-
eos_token_id=tokenizer.eos_token_id,
|
37 |
pad_token_id=tokenizer.eos_token_id
|
38 |
)
|
39 |
|
40 |
# Konvertieren der generierten Token-IDs zurück in Text
|
41 |
-
return tokenizer.decode(
|
42 |
|
43 |
# Erstellen der Gradio-Schnittstelle
|
44 |
-
interface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Starten der Gradio-App
|
47 |
interface.launch()
|
48 |
|
49 |
|
50 |
-
|
51 |
-
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline, set_seed
|
3 |
|
4 |
# Setzen eines Seeds für Reproduzierbarkeit
|
|
|
8 |
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
9 |
tokenizer = model.tokenizer
|
10 |
|
11 |
+
def generate_text(input_text, temperature, top_k, top_p, length, system_prompt):
|
12 |
+
# Anpassen des Eingabetextes mit System-Prompt, falls vorhanden
|
13 |
+
adjusted_input_text = system_prompt + input_text if system_prompt else input_text
|
14 |
|
15 |
+
# Konvertieren des Eingabetextes in Token-IDs
|
16 |
+
input_ids = tokenizer.encode(adjusted_input_text, return_tensors="pt")
|
17 |
|
18 |
# Einstellung der maximalen Länge
|
19 |
+
max_length = length if length else model.model.config.n_positions
|
20 |
|
21 |
# Textgenerierung mit spezifischen Parametern
|
22 |
+
output = model.model.generate(
|
23 |
input_ids,
|
|
|
24 |
max_length=max_length,
|
25 |
+
temperature=temperature,
|
26 |
+
top_k=top_k,
|
27 |
+
top_p=top_p,
|
28 |
no_repeat_ngram_size=2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
pad_token_id=tokenizer.eos_token_id
|
30 |
)
|
31 |
|
32 |
# Konvertieren der generierten Token-IDs zurück in Text
|
33 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
34 |
|
35 |
# Erstellen der Gradio-Schnittstelle
|
36 |
+
interface = gr.Interface(
|
37 |
+
fn=generate_text,
|
38 |
+
inputs=[
|
39 |
+
gr.inputs.Textbox(lines=2, placeholder="Geben Sie Ihren Text hier ein..."),
|
40 |
+
gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.9, label="Temperature"),
|
41 |
+
gr.inputs.Slider(minimum=1, maximum=100, step=1, default=50, label="Top K"),
|
42 |
+
gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.9, label="Top P"),
|
43 |
+
gr.inputs.Number(default=50, label="Länge"),
|
44 |
+
gr.inputs.Textbox(lines=2, placeholder="System-Prompt (optional)")
|
45 |
+
],
|
46 |
+
outputs="text",
|
47 |
+
layout="vertical"
|
48 |
+
)
|
49 |
|
50 |
# Starten der Gradio-App
|
51 |
interface.launch()
|
52 |
|
53 |
|
|
|
|