Spaces:
Runtime error
Runtime error
import yaml | |
import fitz | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.prompts import PromptTemplate | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import spaces | |
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
class RAGbot: | |
def __init__(self, config_path="config.yaml"): | |
self.processed = False | |
self.page = 0 | |
self.chat_history = [] | |
self.prompt = None | |
self.documents = None | |
self.embeddings = None | |
self.vectordb = None | |
self.tokenizer = None | |
self.model = None | |
self.pipeline = None | |
self.chain = None | |
self.chunk_size = 512 | |
self.overlap_percentage = 50 | |
self.max_chunks_in_context = 2 | |
self.current_context = None | |
self.model_temperatue = 0.5 | |
self.format_seperator = "\n\n--\n\n" | |
self.pipe = None | |
with open(config_path, "r") as file: | |
config = yaml.safe_load(file) | |
self.model_embeddings = config["modelEmbeddings"] | |
self.auto_tokenizer = config["autoTokenizer"] | |
self.auto_model_for_causal_lm = config["autoModelForCausalLM"] | |
def load_embeddings(self): | |
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_embeddings) | |
print("Embedding model loaded") | |
def load_vectordb(self): | |
overlap = int((self.overlap_percentage / 100) * self.chunk_size) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=self.chunk_size, | |
chunk_overlap=overlap, | |
length_function=len, | |
add_start_index=True, | |
) | |
docs = text_splitter.split_documents(self.documents) | |
self.vectordb = Chroma.from_documents(docs, self.embeddings) | |
print("Vector store created") | |
def load_tokenizer(self): | |
self.tokenizer = AutoTokenizer.from_pretrained(self.auto_tokenizer) | |
def create_organic_pipeline(self): | |
self.pipe = pipeline( | |
"text-generation", | |
model=self.auto_model_for_causal_lm, | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device="cuda", | |
) | |
print("Model pipeline loaded") | |
def get_organic_context(self, query): | |
documents = self.vectordb.similarity_search_with_relevance_scores(query, k=self.max_chunks_in_context) | |
context = self.format_seperator.join([doc.page_content for doc, score in documents]) | |
self.current_context = context | |
print("Context Ready") | |
print(self.current_context) | |
def create_organic_response(self, history, query): | |
self.get_organic_context(query) | |
messages = [ | |
{"role": "system", "content": "From the context given below, answer the user's question\n" + self.current_context}, | |
{"role": "user", "content": query}, | |
] | |
prompt = self.pipe.tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
temp = 0.1 | |
outputs = self.pipe( | |
prompt, | |
max_new_tokens=1024, | |
do_sample=True, | |
temperature=temp, | |
top_p=0.9, | |
) | |
print(outputs) | |
return outputs[0]["generated_text"][len(prompt):] | |
def process_file(self, file): | |
self.documents = PyPDFLoader(file.name).load() | |
self.load_embeddings() | |
self.load_vectordb() | |
self.create_organic_pipeline() | |
def generate_response(self, history, query, file, chunk_size, chunk_overlap_percentage, model_temperature, max_chunks_in_context): | |
self.chunk_size = chunk_size | |
self.overlap_percentage = chunk_overlap_percentage | |
self.model_temperatue = model_temperature | |
self.max_chunks_in_context = max_chunks_in_context | |
if not query: | |
raise gr.Error(message='Submit a question') | |
if not file: | |
raise gr.Error(message='Upload a PDF') | |
if not self.processed: | |
self.process_file(file) | |
self.processed = True | |
result = self.create_organic_response(history="", query=query) | |
for char in result: | |
history[-1][-1] += char | |
return history, "" | |
def render_file(self, file, chunk_size, chunk_overlap_percentage, model_temperature, max_chunks_in_context): | |
print(chunk_size) | |
doc = fitz.open(file.name) | |
page = doc[self.page] | |
self.chunk_size = chunk_size | |
self.overlap_percentage = chunk_overlap_percentage | |
self.model_temperatue = model_temperature | |
self.max_chunks_in_context = max_chunks_in_context | |
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72)) | |
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) | |
return image | |
def add_text(self, history, text): | |
if not text: | |
raise gr.Error('Enter text') | |
history.append((text, '')) | |
return history | |