Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from dotenv import load_dotenv | |
import torch | |
# Load environment variables | |
load_dotenv() | |
api_token = os.getenv("HF_TOKEN") | |
# List of available LLMs | |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Load and split PDF document | |
def load_doc(list_file_path, chunk_size=1024, chunk_overlap=64): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Create vector database with improved embedding model and parameters | |
def create_db(splits, n_trees=5, search_k=100): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
vectordb = FAISS.from_documents(splits, embeddings, n_trees=n_trees, search_k=search_k) | |
return vectordb | |
# Query expansion and document filtering functions | |
def expand_query(query): | |
expanded_queries = [query, query + " additional term", query + " another term"] | |
return expanded_queries | |
def filter_documents(docs): | |
filtered_docs = [doc for doc in docs if "important" in doc.page_content] | |
return filtered_docs | |
# Initialize langchain LLM chain with query expansion and document filtering | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
huggingfacehub_api_token=api_token, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
query_expansion=expand_query, | |
document_filtering=filter_documents | |
) | |
return qa_chain | |
# Initialize database | |
def initialize_database(list_file_obj, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
doc_splits = load_doc(list_file_path) | |
vector_db = create_db(doc_splits) | |
return vector_db, "Database created!" | |
# Initialize LLM | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm_name = list_llm[llm_option] | |
print("llm_name: ", llm_name) | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "QA chain initialized. Chatbot is ready!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
# Read persona from .md file | |
def load_persona(file_path): | |
with open(file_path, 'r') as file: | |
return file.read() | |
# Inject persona into response | |
def persona_template(response_text, persona_text): | |
return f"{persona_text}\n\n{response_text}" | |
def conversation(qa_chain, message, history, persona_text): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if "Helpful Answer:" in response_answer: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_answer = persona_template(response_answer, persona_text) | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def upload_file(file_obj): | |
list_file_path = [] | |
for idx, file in enumerate(file_obj): | |
file_path = file.name | |
list_file_path.append(file_path) | |
return list_file_path | |
def demo(): | |
persona_text = load_persona('persona.md') | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>") | |
gr.Markdown("""<b>Interact with Your PDF Documents!</b> This AI agent performs retrieval-augmented generation (RAG) on PDF documents. Hosted on Hugging Face Hub for demonstration purposes. \ | |
<b>Do not upload confidential documents.</b>""") | |
# Interface for static pre-selected documents | |
gr.Markdown("<b>Pre-Selected Documents</b>") | |
gr.Textbox(value="Document 1: Introduction to AI.pdf", show_label=False, interactive=False) | |
gr.Textbox(value="Document 2: Advanced Machine Learning.pdf", show_label=False, interactive=False) | |
gr.Markdown("<b>Upload Your PDF Documents</b>") | |
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents") | |
db_btn = gr.Button("Create vector database") | |
db_progress = gr.Textbox(value="Not initialized", show_label=False) | |
gr.Markdown("<b>Select Large Language Model (LLM) and Configure Parameters</b>") | |
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index") | |
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True) | |
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated", interactive=True) | |
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-K", info="Number of tokens to select the next token from", interactive=True) | |
qachain_btn = gr.Button("Initialize Question Answering Chatbot") | |
llm_progress = gr.Textbox(value="Not initialized", show_label=False) | |
gr.Markdown("<b>Chat with Your Document</b>") | |
chatbot = gr.Chatbot(height=505) | |
msg = gr.Textbox(placeholder="Ask a question", container=True) | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") | |
# Bind the events | |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress]) | |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0], | |
inputs=None, | |
outputs=[chatbot, None, None, None, None, None, None], | |
queue=False) | |
msg.submit(conversation, inputs=[qa_chain, msg, chatbot, persona_text], outputs=[qa_chain, msg, chatbot, None, None, None, None], queue=False) | |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, persona_text], outputs=[qa_chain, msg, chatbot, None, None, None, None], queue=False) | |
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot]) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() |