Spaces:
Running
Running
from model import build_transformer | |
from dataset import BilingualDataset, causal_mask | |
from config import get_config, get_weights_file_path | |
import datasets | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import IterableDataset, DataLoader, random_split | |
from torch.optim.lr_scheduler import LambdaLR | |
import warnings | |
from tqdm import tqdm | |
import os | |
from pathlib import Path | |
# Huggingface datasets and tokenizers | |
from datasets import load_dataset | |
from tokenizers import Tokenizer | |
from tokenizers.models import WordLevel | |
from tokenizers.trainers import WordLevelTrainer | |
from tokenizers.pre_tokenizers import Whitespace | |
import torchmetrics | |
import wandb | |
import accelerate | |
from torch.utils.tensorboard import SummaryWriter | |
from safetensors.torch import load_model, save_model | |
from accelerate import Accelerator | |
from transformers import GPT2TokenizerFast | |
import threading | |
def greedy_decode(model, source, source_mask, tokenizer_tgt, max_len, device): | |
sos_idx = tokenizer_tgt.convert_tokens_to_ids('[SOS]') | |
eos_idx = tokenizer_tgt.convert_tokens_to_ids('[EOS]') | |
# Precompute the encoder output and reuse it for every step | |
encoder_output = model.module.encode(source, None) | |
# Initialize the decoder input with the sos token | |
decoder_input = torch.empty(1, 1).fill_(sos_idx).long().to(device) | |
while True: | |
if decoder_input.size(1) == max_len: | |
break | |
# build mask for target | |
decoder_mask = causal_mask(decoder_input.size(1)).long().to(device) | |
# calculate output | |
out = model.module.decode(encoder_output, source_mask, decoder_input, decoder_mask) | |
# print(f'out: {out.shape}') | |
# Get next token probabilities with temperature applied | |
logits = model.module.project(out[:, -1]) | |
probabilities = F.softmax(logits, dim=-1) | |
# Greedily select the next word | |
next_word = torch.argmax(probabilities, dim=1) | |
# Append next word | |
decoder_input = torch.cat([decoder_input, next_word.unsqueeze(0)], dim=1) | |
# # get next token | |
# prob = model.project(out[:, -1]) | |
# _, next_word = torch.max(prob, dim=1) | |
# # print(f'prob: {prob.shape}') | |
# decoder_input = torch.cat( | |
# [decoder_input, torch.empty(1, 1).long().fill_(next_word.item()).to(device)], dim=1 | |
# ) | |
if next_word.item() == eos_idx: | |
break | |
return decoder_input.squeeze(0) | |
def run_validation(model, validation_ds,tokenizer_tgt, max_len, device, print_msg, global_step, num_examples=3): | |
model.eval() | |
count = 0 | |
source_texts = [] | |
expected = [] | |
predicted = [] | |
try: | |
# get the console window width | |
with os.popen('stty size', 'r') as console: | |
_, console_width = console.read().split() | |
console_width = int(console_width)+_ | |
except: | |
# If we can't get the console width, use 80 as default | |
console_width = 80 | |
with torch.no_grad(): | |
for batch in validation_ds: | |
count += 1 | |
encoder_input = batch["encoder_input"].to(device) # (b, seq_len) | |
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len) | |
# check that the batch size is 1 | |
assert encoder_input.size( | |
0) == 1, "Batch size must be 1 for validation" | |
model_out = greedy_decode(model, encoder_input, None, tokenizer_tgt, max_len, device) | |
# source_text = batch["src_text"][0] | |
target_text = batch["tgt_text"][0] | |
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy()) | |
# source_texts.append(source_text) | |
expected.append(target_text) | |
predicted.append(model_out_text) | |
# Print the source, target and model output | |
print_msg('-'*console_width) | |
# print_msg(f"{f'SOURCE: ':>12}{source_text}") | |
print_msg(f"{f'TARGET: ':>12}{target_text}") | |
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}") | |
if count == num_examples: | |
print_msg('-'*console_width) | |
break | |
# if writer: | |
# # Evaluate the character error rate | |
# # Compute the char error rate | |
# metric = torchmetrics.CharErrorRate() | |
# cer = metric(predicted, expected) | |
# writer.add_scalar('validation cer', cer, global_step) | |
# writer.flush() | |
# # Compute the word error rate | |
# metric = torchmetrics.WordErrorRate() | |
# wer = metric(predicted, expected) | |
# writer.add_scalar('validation wer', wer, global_step) | |
# writer.flush() | |
# # Compute the BLEU metric | |
# metric = torchmetrics.BLEUScore() | |
# bleu = metric(predicted, expected) | |
# writer.add_scalar('validation BLEU', bleu, global_step) | |
# writer.flush() | |
def get_all_sentences(ds): | |
for item in ds: | |
yield item['text'] | |
def batch_iterator(data): | |
for i in range(0, len(data)): | |
yield data[i]['text'] | |
# Assuming batch_iterator is a function that yields batches | |
def tqdm_batch_iterator(data, *args, **kwargs): | |
for batch in tqdm(batch_iterator(data, *args, **kwargs), total=len(data)): | |
yield batch | |
def get_or_build_tokenizer(config, ds): | |
tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2", unk_token ='[UNK]', bos_token = '[SOS]', eos_token = '[EOS]' , pad_token = '[PAD]') | |
return tokenizer | |
# tokenizer_path = Path(config['tokenizer_file']) | |
# if not Path.exists(tokenizer_path): | |
# # Most code taken from: https://huggingface.co/docs/tokenizers/quicktour | |
# tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) | |
# tokenizer.pre_tokenizer = Whitespace() | |
# trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2) | |
# tokenizer.train_from_iterator(get_all_sentences(ds), trainer=trainer) | |
# tokenizer.save(str(tokenizer_path)) | |
# else: | |
# tokenizer = Tokenizer.from_file(str(tokenizer_path)) | |
# return tokenizer | |
def get_ds(config): | |
# It only has the train split, so we divide it overselves | |
# ds_raw = load_dataset("HausaNLP/HausaVG", split='train+validation+test+challenge_test') | |
train_ds_raw = load_dataset("MMInstruction/M3IT", 'coco', split ='train') | |
val_ds_raw = load_dataset("MMInstruction/M3IT", 'coco', split ='validation[:2%]') | |
# ds_raw = load_dataset('opus_books', f"{config['lang_src']}-{config['lang_tgt']}", split='train') | |
# Build tokenizers | |
tokenizer_tgt = get_or_build_tokenizer(config, train_ds_raw,) | |
seed = 20 # You can choose any integer as your seed | |
torch.manual_seed(seed) | |
# # Keep 90% for training, 10% for validation | |
# train_ds_size = int(0.9 * len(ds_raw)) | |
# val_ds_size = len(ds_raw) - train_ds_size | |
# train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size]) | |
train_ds = BilingualDataset(train_ds_raw, tokenizer_tgt, config['seq_len']) | |
val_ds = BilingualDataset(val_ds_raw, tokenizer_tgt, config['seq_len']) | |
train_dataloader = DataLoader(train_ds,batch_size=config['batch_size'], shuffle=True ) | |
val_dataloader = DataLoader(val_ds, batch_size=1,shuffle=True ) | |
return train_dataloader, val_dataloader, tokenizer_tgt | |
def get_model(config, vocab_tgt_len): | |
model = build_transformer(vocab_tgt_len, config['seq_len'], d_model=config['d_model']) | |
return model | |
def train_model(config): | |
accelerator = Accelerator() | |
print() | |
wandb.login(key = 'c20a1022142595d7d1324fdc53b3ccb34c0ded22') | |
wandb.init(project="Vision", name=config['project_name']) | |
# Initialize WandB configuration | |
wandb.config.epochs = config['num_epochs'] | |
wandb.config.batch_size = config['batch_size'] | |
wandb.config.learning_rate = config['lr'] | |
# Define the devic | |
# Define the device | |
device = accelerator.device | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("Using device:", device) | |
# Make sure the weights folder exists | |
Path(config['model_folder']).mkdir(parents=True, exist_ok=True) | |
train_dataloader, val_dataloader, tokenizer_tgt = get_ds(config) | |
model = get_model(config, len(tokenizer_tgt)).to(device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], betas=(0.9, 0.98),eps=1e-9) | |
model, optimizer, train_dataloader, val_dataloader = accelerator.prepare( | |
model, optimizer, train_dataloader, val_dataloader | |
) | |
# If the user specified a model to preload before training, load it | |
initial_epoch = 0 | |
global_step = 0 | |
def save_models(): | |
accelerator.save_state(output_dir=f'/kaggle/working/weights/tmodel_00') | |
print(f'saving global step {global_step}') | |
if config['preload']: | |
model_filename = get_weights_file_path(config, config['preload']) | |
print(f'Preloading model {model_filename}') | |
accelerator.load_state(model_filename) | |
initial_epoch = 4 | |
# state = torch.load(model_filename) | |
# model.load_state_dict(state['model_state_dict']) | |
# initial_epoch = state['epoch'] + 1 | |
# optimizer.load_state_dict(state['optimizer_state_dict']) | |
# global_step = state['global_step'] | |
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_tgt.convert_tokens_to_ids('[PAD]'), label_smoothing=0.1).to(device) | |
for epoch in range(initial_epoch, config['num_epochs']): | |
# timer = threading.Timer(5*60, save_models) | |
# timer.start() | |
model.train() | |
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}") | |
for batch in batch_iterator: | |
encoder_input = batch["encoder_input"].to(device) # (b, seq_len) | |
decoder_input = batch["decoder_input"].to(device) # (B, seq_len) | |
encoder_mask = batch["encoder_mask"].to(device) # (B, 1, 1, seq_len) | |
decoder_mask = batch["decoder_mask"].to(device) # (B, 1, seq_len, seq_len) | |
# Run the tensors through the encoder, decoder and the projection layer | |
encoder_output = model.module.encode(encoder_input, None) # (B, seq_len, d_model) | |
decoder_output = model.module.decode(encoder_output, None, decoder_input, decoder_mask) # (B, seq_len, d_model) | |
proj_output = model.module.project(decoder_output) | |
# (B, seq_len, vocab_size) | |
# Compare the output with the label | |
label = batch["label"].to(device) # (B, seq_len) | |
# Compute the loss using a simple cross entropy | |
loss = loss_fn(proj_output.view(-1, len(tokenizer_tgt)), label.view(-1)) | |
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"}) | |
# Log the loss | |
wandb.log({"Training Loss": loss.item(), "Global Step": global_step}) | |
# # Backpropagate the loss | |
# loss.backward() | |
accelerator.backward(loss) | |
# Update the weights | |
optimizer.step() | |
optimizer.zero_grad(set_to_none=True) | |
global_step += 1 | |
# if global_step == 20000 or global_step == 25000: | |
# print(f'saved state at {global_step}') | |
# accelerator.save_state(output_dir=f'/kaggle/working/weights/tmodel_{epoch:02d}') | |
if global_step == 1000 or global_step == 5000 or global_step == 10000 or global_step == 15000 or global_step == 20000 or global_step == 30000: | |
run_validation(model, val_dataloader, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step) | |
model.train() | |
# # Run validation at the end of every epoch | |
# Save the model at the end of every epoch | |
model_filename = get_weights_file_path(config, f"{epoch:02d}") | |
# torch.save({ | |
# 'epoch': epoch, | |
# 'model_state_dict': model.state_dict(), | |
# 'optimizer_state_dict': optimizer.state_dict(), | |
# 'global_step': global_step | |
# }, model_filename) | |
# accelerator.save_model(model, model_filename) | |
accelerator.save_state(output_dir=f'/kaggle/working/weights/tmodel_{epoch:02d}') | |
# run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer) | |
model.eval() | |
eval_loss = 0.0 | |
#accelerate | |
accurate = 0 | |
num_elems = 0 | |
# batch_iterator = tqdm(v_dataloader, desc=f"Processing Epoch {epoch:02d}") | |
with torch.no_grad(): | |
batch_itere = tqdm(val_dataloader, desc=f"Processing loss") | |
for batch in batch_itere: | |
encoder_input = batch['encoder_input'].to(device) # (b, seq_len) | |
decoder_input = batch['decoder_input'].to(device) # (B, seq_len) | |
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len) | |
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len) | |
# Run the tensors through the encoder, decoder and the projection layer | |
encoder_output = model.module.encode(encoder_input, None) # (B, seq_len, d_model) | |
decoder_output = model.module.decode(encoder_output, None, decoder_input, decoder_mask)# (B, seq_len, d_model) | |
proj_output = model.module.project(decoder_output) | |
# (B, seq_len, vocab_size) | |
# Compare the output with the label | |
# label = batch['label'].to(device) # (B, seq_len) | |
proj_output, label = accelerator.gather_for_metrics(( | |
proj_output, batch["label"] | |
)) | |
# Compute the loss using a simple cross entropy | |
ls = loss_fn(proj_output.view(-1, len(tokenizer_tgt)), label.view(-1)) | |
batch_itere.set_postfix({"loss": f"{ls.item():6.3f}"}) | |
eval_loss += ls | |
# loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1)) | |
avg_val_loss = eval_loss / len(val_dataloader) | |
accelerator.print(f"Epoch {epoch},Validation Loss: {avg_val_loss})Validation Loss: {avg_val_loss}") | |
# print(f'Epoch {epoch},Validation Loss: {avg_val_loss.item()}') | |
wandb.log({"Validation Loss": avg_val_loss.item(), "Global Step": global_step}) | |
run_validation(model, val_dataloader, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step) | |
if __name__ == '__main__': | |
warnings.filterwarnings("ignore") | |
config = get_config() | |
train_model(config) | |