File size: 1,053 Bytes
7971d45
 
1a5e155
7971d45
3f0376d
7971d45
 
 
 
7886f0d
 
1a5e155
7886f0d
1a5e155
7886f0d
1a5e155
3f0376d
 
1a5e155
 
 
7886f0d
 
 
1a5e155
7886f0d
 
1a5e155
 
7886f0d
 
1a5e155
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch

# Autenticar usando el token almacenado como secreto
hf_token = os.getenv("HF_API_TOKEN")
login(hf_token)

# Cargar el modelo y el tokenizador
model_name = "mrm8488/t5-base-finetuned-spanish"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

def generate_text(input_text):
    inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model.generate(**inputs, max_length=200, num_beams=4, early_stopping=True)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

# Crear la interfaz con Gradio
iface = gr.Interface(
    fn=generate_text,
    inputs="text",
    outputs="text",
    title="Generador de Texto en Español",
    description="Genera texto en español utilizando un modelo de lenguaje preentrenado."
)

iface.launch()