File size: 7,868 Bytes
9ba8fab 3769468 9ba8fab 3769468 6960dc6 ddc83ff 9ba8fab ddc83ff 9ba8fab ddc83ff 3769468 d415750 ddc83ff 3769468 ddc83ff 3769468 ddc83ff 3769468 ddc83ff 3769468 ddc83ff 3769468 d415750 3769468 ddc83ff 3769468 d415750 3769468 d415750 ddc83ff 3769468 ddc83ff 3769468 d415750 ddc83ff d415750 ddc83ff d415750 ddc83ff 3769468 ddc83ff 3769468 ddc83ff d415750 3769468 d415750 3769468 d415750 3769468 d415750 ddc83ff 3769468 ddc83ff 3769468 9ba8fab ddc83ff 9ba8fab ddc83ff d415750 3769468 d415750 29c8f24 d415750 9ba8fab d415750 ddc83ff 3769468 d415750 3769468 d415750 3769468 d415750 6960dc6 ddc83ff d415750 ddc83ff d415750 ddc83ff d415750 ddc83ff d415750 9ba8fab ddc83ff 9ba8fab d415750 3769468 9ba8fab ddc83ff d415750 c726970 ddc83ff d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab ddc83ff d415750 ddc83ff 3769468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
# Load the Bambara ASR dataset
print("Loading dataset...")
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}
# Load or initialize the leaderboard
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
def normalize_text(text):
"""
Normalize text for WER/CER calculation:
- Convert to lowercase
- Remove punctuation
- Replace multiple spaces with single space
- Strip leading/trailing spaces
"""
if not isinstance(text, str):
text = str(text)
# Convert to lowercase
text = text.lower()
# Remove punctuation, keeping spaces
text = re.sub(r'[^\w\s]', '', text)
# Normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
print(f"Warning: ID {id_val} not found in references")
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
# Print detailed info for first few entries
if len(results) < 5:
print(f"ID: {id_val}")
print(f"Reference: '{reference}'")
print(f"Hypothesis: '{hypothesis}'")
# Skip empty strings
if not reference or not hypothesis:
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
continue
# Split into words for jiwer
reference_words = reference.split()
hypothesis_words = hypothesis.split()
if len(results) < 5:
print(f"Reference words: {reference_words}")
print(f"Hypothesis words: {hypothesis_words}")
# Calculate metrics
try:
# Make sure we're not comparing identical strings
if reference == hypothesis:
print(f"Warning: Identical strings for ID {id_val}")
# Force a small difference if the strings are identical
# This is for debugging - remove in production if needed
if len(hypothesis_words) > 0:
# Add a dummy word to force non-zero WER
hypothesis_words.append("dummy_debug_token")
hypothesis = " ".join(hypothesis_words)
# Calculate WER and CER
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
if len(results) < 5:
print(f"WER: {sample_wer}, CER: {sample_cer}")
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not results:
raise ValueError("No valid samples for WER/CER calculation")
# Calculate average metrics
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
return avg_wer, avg_cer, results
def process_submission(submitter_name, csv_file):
try:
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
print(f"Processing submission from {submitter_name} with {len(df)} rows")
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
# Check if IDs match the reference dataset
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
# Calculate WER and CER
try:
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
# Debug information
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Processed {len(detailed_results)} valid samples")
# Check for suspiciously low values
if avg_wer < 0.001:
print("WARNING: WER is extremely low - likely an error")
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
print(f"Error in metrics calculation: {str(e)}")
return f"Error calculating metrics: {str(e)}", None
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
except Exception as e:
print(f"Error processing submission: {str(e)}")
return f"Error processing submission: {str(e)}", None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
- **WER**: Word Error Rate (lower is better).
- **CER**: Character Error Rate (lower is better).
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Leaderboard",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
# Print startup message
print("Starting Bambara ASR Leaderboard app...")
# Launch the app
if __name__ == "__main__":
demo.launch(share=True) |