|
import gradio as gr |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from jiwer import wer, cer |
|
import os |
|
from datetime import datetime |
|
import re |
|
|
|
|
|
print("Loading dataset...") |
|
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"] |
|
references = {row["id"]: row["text"] for row in dataset} |
|
|
|
|
|
leaderboard_file = "leaderboard.csv" |
|
if not os.path.exists(leaderboard_file): |
|
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False) |
|
else: |
|
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries") |
|
|
|
def normalize_text(text): |
|
""" |
|
Normalize text for WER/CER calculation: |
|
- Convert to lowercase |
|
- Remove punctuation |
|
- Replace multiple spaces with single space |
|
- Strip leading/trailing spaces |
|
""" |
|
if not isinstance(text, str): |
|
text = str(text) |
|
|
|
|
|
text = text.lower() |
|
|
|
|
|
text = re.sub(r'[^\w\s]', '', text) |
|
|
|
|
|
text = re.sub(r'\s+', ' ', text).strip() |
|
|
|
return text |
|
|
|
def calculate_metrics(predictions_df): |
|
"""Calculate WER and CER for predictions.""" |
|
results = [] |
|
|
|
for _, row in predictions_df.iterrows(): |
|
id_val = row["id"] |
|
if id_val not in references: |
|
print(f"Warning: ID {id_val} not found in references") |
|
continue |
|
|
|
reference = normalize_text(references[id_val]) |
|
hypothesis = normalize_text(row["text"]) |
|
|
|
|
|
if len(results) < 5: |
|
print(f"ID: {id_val}") |
|
print(f"Reference: '{reference}'") |
|
print(f"Hypothesis: '{hypothesis}'") |
|
|
|
|
|
if not reference or not hypothesis: |
|
print(f"Warning: Empty reference or hypothesis for ID {id_val}") |
|
continue |
|
|
|
|
|
reference_words = reference.split() |
|
hypothesis_words = hypothesis.split() |
|
|
|
if len(results) < 5: |
|
print(f"Reference words: {reference_words}") |
|
print(f"Hypothesis words: {hypothesis_words}") |
|
|
|
|
|
try: |
|
|
|
if reference == hypothesis: |
|
print(f"Warning: Identical strings for ID {id_val}") |
|
|
|
|
|
if len(hypothesis_words) > 0: |
|
|
|
hypothesis_words.append("dummy_debug_token") |
|
hypothesis = " ".join(hypothesis_words) |
|
|
|
|
|
sample_wer = wer(reference, hypothesis) |
|
sample_cer = cer(reference, hypothesis) |
|
|
|
if len(results) < 5: |
|
print(f"WER: {sample_wer}, CER: {sample_cer}") |
|
|
|
results.append({ |
|
"id": id_val, |
|
"reference": reference, |
|
"hypothesis": hypothesis, |
|
"wer": sample_wer, |
|
"cer": sample_cer |
|
}) |
|
except Exception as e: |
|
print(f"Error calculating metrics for ID {id_val}: {str(e)}") |
|
|
|
if not results: |
|
raise ValueError("No valid samples for WER/CER calculation") |
|
|
|
|
|
avg_wer = sum(item["wer"] for item in results) / len(results) |
|
avg_cer = sum(item["cer"] for item in results) / len(results) |
|
|
|
return avg_wer, avg_cer, results |
|
|
|
def process_submission(submitter_name, csv_file): |
|
try: |
|
|
|
df = pd.read_csv(csv_file) |
|
print(f"Processing submission from {submitter_name} with {len(df)} rows") |
|
|
|
if len(df) == 0: |
|
return "Error: Uploaded CSV is empty.", None |
|
|
|
if set(df.columns) != {"id", "text"}: |
|
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None |
|
|
|
if df["id"].duplicated().any(): |
|
dup_ids = df[df["id"].duplicated()]["id"].unique() |
|
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None |
|
|
|
|
|
missing_ids = set(references.keys()) - set(df["id"]) |
|
extra_ids = set(df["id"]) - set(references.keys()) |
|
|
|
if missing_ids: |
|
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None |
|
|
|
if extra_ids: |
|
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None |
|
|
|
|
|
try: |
|
avg_wer, avg_cer, detailed_results = calculate_metrics(df) |
|
|
|
|
|
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}") |
|
print(f"Processed {len(detailed_results)} valid samples") |
|
|
|
|
|
if avg_wer < 0.001: |
|
print("WARNING: WER is extremely low - likely an error") |
|
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None |
|
|
|
except Exception as e: |
|
print(f"Error in metrics calculation: {str(e)}") |
|
return f"Error calculating metrics: {str(e)}", None |
|
|
|
|
|
leaderboard = pd.read_csv(leaderboard_file) |
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
new_entry = pd.DataFrame( |
|
[[submitter_name, avg_wer, avg_cer, timestamp]], |
|
columns=["submitter", "WER", "CER", "timestamp"] |
|
) |
|
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER") |
|
leaderboard.to_csv(leaderboard_file, index=False) |
|
|
|
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard |
|
|
|
except Exception as e: |
|
print(f"Error processing submission: {str(e)}") |
|
return f"Error processing submission: {str(e)}", None |
|
|
|
|
|
with gr.Blocks(title="Bambara ASR Leaderboard") as demo: |
|
gr.Markdown( |
|
""" |
|
# Bambara ASR Leaderboard |
|
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions. |
|
The 'id's must match those in the dataset. |
|
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset). |
|
- **WER**: Word Error Rate (lower is better). |
|
- **CER**: Character Error Rate (lower is better). |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr") |
|
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"]) |
|
|
|
submit_btn = gr.Button("Submit") |
|
output_msg = gr.Textbox(label="Status", interactive=False) |
|
leaderboard_display = gr.DataFrame( |
|
label="Leaderboard", |
|
value=pd.read_csv(leaderboard_file), |
|
interactive=False |
|
) |
|
|
|
submit_btn.click( |
|
fn=process_submission, |
|
inputs=[submitter, csv_upload], |
|
outputs=[output_msg, leaderboard_display] |
|
) |
|
|
|
|
|
print("Starting Bambara ASR Leaderboard app...") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |