sudoping01's picture
Update app.py
ddc83ff verified
raw
history blame
7.87 kB
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
# Load the Bambara ASR dataset
print("Loading dataset...")
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}
# Load or initialize the leaderboard
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
def normalize_text(text):
"""
Normalize text for WER/CER calculation:
- Convert to lowercase
- Remove punctuation
- Replace multiple spaces with single space
- Strip leading/trailing spaces
"""
if not isinstance(text, str):
text = str(text)
# Convert to lowercase
text = text.lower()
# Remove punctuation, keeping spaces
text = re.sub(r'[^\w\s]', '', text)
# Normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
print(f"Warning: ID {id_val} not found in references")
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
# Print detailed info for first few entries
if len(results) < 5:
print(f"ID: {id_val}")
print(f"Reference: '{reference}'")
print(f"Hypothesis: '{hypothesis}'")
# Skip empty strings
if not reference or not hypothesis:
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
continue
# Split into words for jiwer
reference_words = reference.split()
hypothesis_words = hypothesis.split()
if len(results) < 5:
print(f"Reference words: {reference_words}")
print(f"Hypothesis words: {hypothesis_words}")
# Calculate metrics
try:
# Make sure we're not comparing identical strings
if reference == hypothesis:
print(f"Warning: Identical strings for ID {id_val}")
# Force a small difference if the strings are identical
# This is for debugging - remove in production if needed
if len(hypothesis_words) > 0:
# Add a dummy word to force non-zero WER
hypothesis_words.append("dummy_debug_token")
hypothesis = " ".join(hypothesis_words)
# Calculate WER and CER
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
if len(results) < 5:
print(f"WER: {sample_wer}, CER: {sample_cer}")
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not results:
raise ValueError("No valid samples for WER/CER calculation")
# Calculate average metrics
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
return avg_wer, avg_cer, results
def process_submission(submitter_name, csv_file):
try:
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
print(f"Processing submission from {submitter_name} with {len(df)} rows")
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
# Check if IDs match the reference dataset
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
# Calculate WER and CER
try:
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
# Debug information
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Processed {len(detailed_results)} valid samples")
# Check for suspiciously low values
if avg_wer < 0.001:
print("WARNING: WER is extremely low - likely an error")
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
print(f"Error in metrics calculation: {str(e)}")
return f"Error calculating metrics: {str(e)}", None
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
except Exception as e:
print(f"Error processing submission: {str(e)}")
return f"Error processing submission: {str(e)}", None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
- **WER**: Word Error Rate (lower is better).
- **CER**: Character Error Rate (lower is better).
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Leaderboard",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
# Print startup message
print("Starting Bambara ASR Leaderboard app...")
# Launch the app
if __name__ == "__main__":
demo.launch(share=True)