Update app.py
Browse filesmake model name cliquable and around the metrics
app.py
CHANGED
@@ -28,13 +28,7 @@ else:
|
|
28 |
leaderboard_df.to_csv(leaderboard_file, index=False)
|
29 |
|
30 |
def normalize_text(text):
|
31 |
-
"""
|
32 |
-
Normalize text for WER/CER calculation:
|
33 |
-
- Convert to lowercase
|
34 |
-
- Remove punctuation
|
35 |
-
- Replace multiple spaces with single space
|
36 |
-
- Strip leading/trailing spaces
|
37 |
-
"""
|
38 |
if not isinstance(text, str):
|
39 |
text = str(text)
|
40 |
|
@@ -92,21 +86,42 @@ def calculate_metrics(predictions_df):
|
|
92 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
93 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
94 |
|
|
|
95 |
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
|
96 |
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
|
97 |
|
98 |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
99 |
|
100 |
-
def
|
101 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
if len(df) == 0:
|
103 |
-
return pd.DataFrame(columns=["Rank"
|
104 |
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def update_ranking(method):
|
112 |
"""Update leaderboard ranking based on selected method"""
|
@@ -122,10 +137,10 @@ def update_ranking(method):
|
|
122 |
elif method == "CER Only":
|
123 |
sort_column = "CER"
|
124 |
|
125 |
-
return
|
126 |
|
127 |
except Exception:
|
128 |
-
return pd.DataFrame(columns=["Rank", "Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
129 |
|
130 |
def process_submission(model_name, csv_file):
|
131 |
try:
|
@@ -163,6 +178,7 @@ def process_submission(model_name, csv_file):
|
|
163 |
leaderboard = pd.read_csv(leaderboard_file)
|
164 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
165 |
|
|
|
166 |
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
167 |
|
168 |
new_entry = pd.DataFrame(
|
@@ -170,13 +186,13 @@ def process_submission(model_name, csv_file):
|
|
170 |
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
|
171 |
)
|
172 |
|
173 |
-
|
174 |
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
|
175 |
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
176 |
|
177 |
-
|
178 |
|
179 |
-
return f"Submission processed successfully! WER: {avg_wer
|
180 |
|
181 |
except Exception as e:
|
182 |
return f"Error processing submission: {str(e)}", None
|
@@ -184,7 +200,7 @@ def process_submission(model_name, csv_file):
|
|
184 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
185 |
gr.Markdown(
|
186 |
"""
|
187 |
-
# Bambara ASR Leaderboard
|
188 |
|
189 |
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
|
190 |
Models are ranked based on a combined score of WER and CER metrics.
|
@@ -199,10 +215,9 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
199 |
if "Combined_Score" not in current_leaderboard.columns:
|
200 |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
201 |
|
202 |
-
|
203 |
-
current_leaderboard = add_ranking_numbers(current_leaderboard.sort_values("Combined_Score"))
|
204 |
except Exception:
|
205 |
-
|
206 |
|
207 |
gr.Markdown("### Current ASR Model Rankings")
|
208 |
|
@@ -213,7 +228,7 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
213 |
)
|
214 |
|
215 |
leaderboard_view = gr.DataFrame(
|
216 |
-
value=
|
217 |
interactive=False,
|
218 |
label="Models are ranked by selected metric - lower is better"
|
219 |
)
|
@@ -227,9 +242,9 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
227 |
gr.Markdown(
|
228 |
"""
|
229 |
## Metrics Explanation
|
230 |
-
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
|
231 |
-
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
|
232 |
-
- **Combined Score**: Weighted average of WER (70%) and CER (30%) - provides a balanced evaluation
|
233 |
"""
|
234 |
)
|
235 |
|
@@ -251,7 +266,7 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
251 |
output_msg = gr.Textbox(label="Status", interactive=False)
|
252 |
leaderboard_display = gr.DataFrame(
|
253 |
label="Updated Leaderboard",
|
254 |
-
value=
|
255 |
interactive=False
|
256 |
)
|
257 |
|
@@ -262,4 +277,4 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
262 |
)
|
263 |
|
264 |
if __name__ == "__main__":
|
265 |
-
demo.launch()
|
|
|
28 |
leaderboard_df.to_csv(leaderboard_file, index=False)
|
29 |
|
30 |
def normalize_text(text):
|
31 |
+
"""Normalize text for WER/CER calculation"""
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
if not isinstance(text, str):
|
33 |
text = str(text)
|
34 |
|
|
|
86 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
87 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
88 |
|
89 |
+
# Calculate weighted average metrics based on reference length
|
90 |
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
|
91 |
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
|
92 |
|
93 |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
94 |
|
95 |
+
def format_as_percentage(value):
|
96 |
+
"""Convert decimal to percentage with 2 decimal places"""
|
97 |
+
return f"{value * 100:.2f}%"
|
98 |
+
|
99 |
+
def make_clickable_model(model_name):
|
100 |
+
"""Format model name as clickable link to Hugging Face hub"""
|
101 |
+
link = f"https://huggingface.co/{model_name}"
|
102 |
+
return f'<a href="{link}" target="_blank" style="text-decoration: underline;">{model_name}</a>'
|
103 |
+
|
104 |
+
def prepare_leaderboard_for_display(df, sort_by="Combined_Score"):
|
105 |
+
"""Format leaderboard for display with ranking and percentages"""
|
106 |
if len(df) == 0:
|
107 |
+
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
|
108 |
|
109 |
|
110 |
+
display_df = df.copy()
|
111 |
+
|
112 |
+
display_df = display_df.sort_values(sort_by)
|
113 |
+
|
114 |
+
display_df.insert(0, "Rank", range(1, len(display_df) + 1))
|
115 |
|
116 |
+
for col in ["WER", "CER", "Combined_Score"]:
|
117 |
+
if col in display_df.columns:
|
118 |
+
display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}")
|
119 |
+
display_df = display_df.drop(col, axis=1)
|
120 |
+
|
121 |
+
if "Model_Name" in display_df.columns:
|
122 |
+
display_df["Model_Name"] = display_df["Model_Name"].apply(make_clickable_model)
|
123 |
+
|
124 |
+
return display_df
|
125 |
|
126 |
def update_ranking(method):
|
127 |
"""Update leaderboard ranking based on selected method"""
|
|
|
137 |
elif method == "CER Only":
|
138 |
sort_column = "CER"
|
139 |
|
140 |
+
return prepare_leaderboard_for_display(current_lb, sort_column)
|
141 |
|
142 |
except Exception:
|
143 |
+
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
|
144 |
|
145 |
def process_submission(model_name, csv_file):
|
146 |
try:
|
|
|
178 |
leaderboard = pd.read_csv(leaderboard_file)
|
179 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
180 |
|
181 |
+
# Calculate combined score (70% WER, 30% CER)
|
182 |
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
183 |
|
184 |
new_entry = pd.DataFrame(
|
|
|
186 |
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
|
187 |
)
|
188 |
|
189 |
+
|
190 |
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
|
191 |
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
192 |
|
193 |
+
display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard)
|
194 |
|
195 |
+
return f"Submission processed successfully! WER: {format_as_percentage(avg_wer)}, CER: {format_as_percentage(avg_cer)}, Combined Score: {format_as_percentage(combined_score)}", display_leaderboard
|
196 |
|
197 |
except Exception as e:
|
198 |
return f"Error processing submission: {str(e)}", None
|
|
|
200 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
201 |
gr.Markdown(
|
202 |
"""
|
203 |
+
# 🇲🇱 Bambara ASR Leaderboard
|
204 |
|
205 |
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
|
206 |
Models are ranked based on a combined score of WER and CER metrics.
|
|
|
215 |
if "Combined_Score" not in current_leaderboard.columns:
|
216 |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
217 |
|
218 |
+
display_leaderboard = prepare_leaderboard_for_display(current_leaderboard)
|
|
|
219 |
except Exception:
|
220 |
+
display_leaderboard = pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
|
221 |
|
222 |
gr.Markdown("### Current ASR Model Rankings")
|
223 |
|
|
|
228 |
)
|
229 |
|
230 |
leaderboard_view = gr.DataFrame(
|
231 |
+
value=display_leaderboard,
|
232 |
interactive=False,
|
233 |
label="Models are ranked by selected metric - lower is better"
|
234 |
)
|
|
|
242 |
gr.Markdown(
|
243 |
"""
|
244 |
## Metrics Explanation
|
245 |
+
- **WER (%)**: Word Error Rate (lower is better) - measures word-level accuracy
|
246 |
+
- **CER (%)**: Character Error Rate (lower is better) - measures character-level accuracy
|
247 |
+
- **Combined Score (%)**: Weighted average of WER (70%) and CER (30%) - provides a balanced evaluation
|
248 |
"""
|
249 |
)
|
250 |
|
|
|
266 |
output_msg = gr.Textbox(label="Status", interactive=False)
|
267 |
leaderboard_display = gr.DataFrame(
|
268 |
label="Updated Leaderboard",
|
269 |
+
value=display_leaderboard,
|
270 |
interactive=False
|
271 |
)
|
272 |
|
|
|
277 |
)
|
278 |
|
279 |
if __name__ == "__main__":
|
280 |
+
demo.launch()
|