File size: 3,535 Bytes
5558e45
da2c9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beba0cd
4df79e9
 
3da5b25
 
 
 
 
2ede8ce
4df79e9
da2c9bd
 
 
 
3c9ea56
da2c9bd
3c9ea56
da2c9bd
 
 
 
3c9ea56
ab2e1ab
 
 
ae45490
4df79e9
ae45490
 
ab2e1ab
4df79e9
 
 
 
 
 
ae45490
3c9ea56
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error

data = pd.read_csv("modeled_data.csv")

def sample_model(df, regressor, scale=None):
    X = df.drop("rate",axis=1)
    y = df["rate"]
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
    scaled_X_train, scaled_X_test = X_train, X_test
    if scale != None:
        scaler = scale
        scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns)
        scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns)
    
    model = regressor
    model.fit(scaled_X_train, y_train)
    y_pred = model.predict(scaled_X_test)
    
    rmse = np.sqrt(mean_squared_error(y_test, y_pred))
    
    return model, scaled_X_train, scaled_X_test, y_train, y_test 


def user_interaction(comment, model):
    
    negative_score = analyzer.polarity_scores(comment)["neg"]
    neutral_score = analyzer.polarity_scores(comment)["neu"]
    positive_score = analyzer.polarity_scores(comment)["pos"]
    compound_score = analyzer.polarity_scores(comment)["compound"]
    rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
    
    return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2)
    """return (f"\nYour Comment: {comment}\n" + 
           "*"*10 + "Analysis of the Comment" + "*"*10 + "\n" +
           "-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10 + "\n" +
           "-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10 + "\n" +
           "-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10 + "\n" +
           "-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10 + "\n" +
           "*"*43 + "\n"), ("\nThe estimated rating this comment can give" + "\n" + 
           "*"*20 + str(round(rate_pred[0], 2)) + "*"*20 + "\n")"""


def take_input(model):
    if (detect(comment) != "en") or (len(comment) < 20):
        return "Sorry, your comment does not meet the requirements.\n", "Please check your comment"
    else:
        return user_interaction(comment, model)

cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))


with gr.Blocks() as demo:
    gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
    gr.Markdown("## Generating a Rating from User Comment")
    with gr.Column():
        gr.Markdown("### Thanks for your interest and taking your time." +
                                   "#### Tell us about your personal experience enrolling in this course. Was it the right match for you?\n"+
                                   "#### (Note: Comment should be written in English and be longer than 20 characters)\n")
        comment = gr.Textbox(placeholder="Write your comment here...")
        button = gr.Button("What is the Rating I Gave? Click me to Learn")
        gr.Markdown("#### Sentiment Scores of Your Comment")
        negscore = gr.Number(label="Negativity Score")
        neuscore = gr.Number(label="Neutrality Score")
        posscore = gr.Number(label="Positivity Score")
        compscore = gr.Number(label="Compound Score")
        rating = gr.Number(label="Generated Rating from Your Comment")        
    button.click(fn=take_input(cons_tuned_svr), inputs=comment, outputs=[negscore, neuscore, posscore, compscore, rating])

demo.launch()