Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.svm import SVR | |
from sklearn.metrics import mean_squared_error | |
data = pd.read_csv("modeled_data.csv") | |
def sample_model(df, regressor, scale=None): | |
X = df.drop("rate",axis=1) | |
y = df["rate"] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1) | |
scaled_X_train, scaled_X_test = X_train, X_test | |
if scale != None: | |
scaler = scale | |
scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns) | |
scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns) | |
model = regressor | |
model.fit(scaled_X_train, y_train) | |
y_pred = model.predict(scaled_X_test) | |
rmse = np.sqrt(mean_squared_error(y_test, y_pred)) | |
return model, scaled_X_train, scaled_X_test, y_train, y_test | |
def user_interaction(comment, model): | |
negative_score = analyzer.polarity_scores(comment)["neg"] | |
neutral_score = analyzer.polarity_scores(comment)["neu"] | |
positive_score = analyzer.polarity_scores(comment)["pos"] | |
compound_score = analyzer.polarity_scores(comment)["compound"] | |
rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]]) | |
print(f"\nYour Comment: {comment}\n") | |
print("*"*10 + "Analysis of the Comment" + "*"*10) | |
print("-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10) | |
print("-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10) | |
print("-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10) | |
print("-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10) | |
print("*"*43) | |
print("\nThe estimated rating this comment can give") | |
print("*"*20 + str(round(rate_pred[0], 2)) + "*"*20) | |
def take_input(model): | |
comment = input("Thanks for your interest and taking your time.\n"+ | |
"Tell us about your personal experience enrolling in this course. Was it the right match for you?\n"+ | |
"(Note: Comment should be written in English and be longer than 20 characters)\n") | |
if (detect(comment) != "en") or (len(comment) < 20): | |
print("Sorry, your comment does not meet the requirements.\n") | |
take_input(model) | |
else: | |
user_interaction(comment, model) | |
cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001)) | |
iface = gr.Interface(fn=take_input(cons_tuned_svr), inputs="text", outputs="text") | |
iface.launch() |