Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data (https://arxiv.org/abs/2203.17113) | |
# Github source: https://github.com/microsoft/SpeechT5/tree/main/Speech2C | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Based on fairseq code bases | |
# https://github.com/pytorch/fairseq | |
# -------------------------------------------------------- | |
from argparse import Namespace | |
from omegaconf import II | |
import torch.nn as nn | |
from dataclasses import dataclass, field | |
from fairseq import checkpoint_utils, tasks, utils | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model | |
from fairseq.models.hubert.hubert_asr import HubertAsrConfig, Linear | |
from fairseq.tasks import FairseqTask | |
class Speech2cAsrConfig(HubertAsrConfig): | |
# for decoder | |
decoder_layerdrop: float = field( | |
default=0.0, | |
metadata={"help": "probability of dropping a decoder layer in hubert"}, | |
) | |
add_decoder: bool = II("task.add_decoder") | |
class Speech2cCtcConfig(Speech2cAsrConfig): | |
pass | |
class Speech2cCtc(BaseFairseqModel): | |
def __init__(self, cfg: Speech2cCtcConfig, w2v_encoder: BaseFairseqModel): | |
super().__init__() | |
self.cfg = cfg | |
self.w2v_encoder = w2v_encoder | |
def upgrade_state_dict_named(self, state_dict, name): | |
super().upgrade_state_dict_named(state_dict, name) | |
return state_dict | |
def build_model(cls, cfg: Speech2cCtcConfig, task: FairseqTask): | |
"""Build a new model instance.""" | |
w2v_encoder = Speech2cEncoder(cfg, task.target_dictionary) | |
return cls(cfg, w2v_encoder) | |
def get_normalized_probs(self, net_output, log_probs, sample=None): | |
"""Get normalized probabilities (or log probs) from a net's output.""" | |
if "encoder_out" not in net_output: | |
return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample) | |
if "encoder_out_for_ctc" in net_output: | |
logits = net_output["encoder_out_for_ctc"] | |
else: | |
logits = net_output["encoder_out"] | |
if isinstance(logits, list): | |
logits = logits[0] | |
if log_probs: | |
return utils.log_softmax(logits.float(), dim=-1) | |
else: | |
return utils.softmax(logits.float(), dim=-1) | |
def get_logits(self, net_output): | |
logits = net_output["encoder_out"] | |
padding = net_output["encoder_padding_mask"] | |
if padding is not None and padding.any(): | |
padding = padding.T | |
logits[padding][..., 0] = 0 | |
logits[padding][..., 1:] = float("-inf") | |
return logits | |
def forward(self, **kwargs): | |
x = self.w2v_encoder(**kwargs) | |
return x | |
def encoder(self): | |
return self.w2v_encoder | |
def reorder_encoder_out(self, encoder_out, new_order): | |
return self.encoder.reorder_encoder_out(encoder_out, new_order) | |
def decoder(self): | |
return self.w2v_encoder.w2v_model.decoder | |
class Speech2cEncoder(FairseqEncoder): | |
def __init__(self, cfg: Speech2cAsrConfig, tgt_dict=None): | |
self.apply_mask = cfg.apply_mask | |
arg_overrides = { | |
"dropout": cfg.dropout, | |
"activation_dropout": cfg.activation_dropout, | |
"dropout_input": cfg.dropout_input, | |
"attention_dropout": cfg.attention_dropout, | |
"mask_length": cfg.mask_length, | |
"mask_prob": cfg.mask_prob, | |
"mask_selection": cfg.mask_selection, | |
"mask_other": cfg.mask_other, | |
"no_mask_overlap": cfg.no_mask_overlap, | |
"mask_channel_length": cfg.mask_channel_length, | |
"mask_channel_prob": cfg.mask_channel_prob, | |
"mask_channel_selection": cfg.mask_channel_selection, | |
"mask_channel_other": cfg.mask_channel_other, | |
"no_mask_channel_overlap": cfg.no_mask_channel_overlap, | |
"encoder_layerdrop": cfg.layerdrop, | |
"decoder_layerdrop": cfg.decoder_layerdrop, | |
"feature_grad_mult": cfg.feature_grad_mult, | |
"decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1, | |
} | |
if cfg.w2v_args is None: | |
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) | |
w2v_args = state.get("cfg", None) | |
if w2v_args is None: | |
w2v_args = convert_namespace_to_omegaconf(state["args"]) | |
cfg.w2v_args = w2v_args | |
else: | |
state = None | |
w2v_args = cfg.w2v_args | |
if isinstance(w2v_args, Namespace): | |
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) | |
assert cfg.normalize == w2v_args.task.normalize, ( | |
"Fine-tuning works best when data normalization is the same. " | |
"Please check that --normalize is set or unset for " | |
"both pre-training and here" | |
) | |
w2v_args.task.data = cfg.data | |
w2v_args.task.add_decoder = cfg.add_decoder | |
task = tasks.setup_task(w2v_args.task) | |
if state is not None and "task_state" in state: | |
# This will load the stored "dictionaries" object | |
task.load_state_dict(state["task_state"]) | |
model = task.build_model(w2v_args.model) | |
if state is not None and not cfg.no_pretrained_weights: | |
if "decoder.embed_tokens.weight" in state["model"]: | |
del state["model"]["decoder.embed_tokens.weight"] | |
if "decoder.output_projection.weight" in state["model"]: | |
del state["model"]["decoder.output_projection.weight"] | |
# set strict=False because we omit some modules | |
model.load_state_dict(state["model"], strict=False) | |
model.remove_pretraining_modules() | |
super().__init__(task.source_dictionary) | |
d = model.mask_emb.size(0) | |
self.w2v_model = model | |
self.final_dropout = nn.Dropout(cfg.final_dropout) | |
self.freeze_finetune_updates = cfg.freeze_finetune_updates | |
self.num_updates = 0 | |
if tgt_dict is not None: | |
self.proj = Linear(d, len(tgt_dict)) | |
elif getattr(cfg, "decoder_embed_dim", d) != d: | |
self.proj = Linear(d, cfg.decoder_embed_dim) | |
else: | |
self.proj = None | |
def set_num_updates(self, num_updates): | |
"""Set the number of parameters updates.""" | |
super().set_num_updates(num_updates) | |
self.num_updates = num_updates | |
def forward(self, source, padding_mask, prev_output_tokens=None, tbc=True, **kwargs): | |
ft = self.freeze_finetune_updates <= self.num_updates | |
w2v_args = { | |
"source": source, | |
"padding_mask": padding_mask, | |
"mask": self.apply_mask and self.training, | |
"prev_output_tokens": prev_output_tokens, | |
"ft": ft, | |
} | |
x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args) | |
if tbc: | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
x = self.final_dropout(x) | |
if self.proj: | |
x = self.proj(x) | |
return { | |
"encoder_out": x, # T x B x C | |
"encoder_padding_mask": padding_mask, # B x T | |
"padding_mask": padding_mask, | |
"decoder_out": decoder_out, | |
} | |
def get_normalized_probs_decoder(self, net_output, log_probs, sample=None): | |
# net_output['encoder_out'] is a (B, T, D) tensor | |
return self.w2v_model.get_normalized_probs(net_output, log_probs, sample) | |
def reorder_encoder_out(self, encoder_out, new_order): | |
if encoder_out["encoder_out"] is not None: | |
if isinstance(encoder_out["encoder_out"], list): | |
encoder_out["encoder_out"] = ( | |
[] if len(encoder_out["encoder_out"]) == 0 | |
else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]] | |
) | |
else: | |
encoder_out["encoder_out"] = encoder_out[ | |
"encoder_out" | |
].index_select(1, new_order) | |
if encoder_out["encoder_padding_mask"] is not None: | |
if isinstance(encoder_out["encoder_padding_mask"], list): | |
encoder_out["encoder_padding_mask"] = ( | |
[] if len(encoder_out["encoder_padding_mask"]) == 0 | |
else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]] | |
) | |
else: | |
encoder_out["encoder_padding_mask"] = encoder_out[ | |
"encoder_padding_mask" | |
].index_select(0, new_order) | |
if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None: | |
if isinstance(encoder_out["decoder_out"], list): | |
encoder_out["decoder_out"] = ( | |
[] if len(encoder_out["decoder_out"]) == 0 | |
else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]] | |
) | |
else: | |
encoder_out["decoder_out"] = encoder_out[ | |
"decoder_out" | |
].index_select(0, new_order) | |
if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None: | |
if isinstance(encoder_out["encoder_out_for_ctc"], list): | |
encoder_out["encoder_out_for_ctc"] = ( | |
[] if len(encoder_out["encoder_out_for_ctc"]) == 0 | |
else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]] | |
) | |
else: | |
encoder_out["encoder_out_for_ctc"] = encoder_out[ | |
"encoder_out_for_ctc" | |
].index_select(1, new_order) | |
return encoder_out | |
def forward_torchscript(self, net_input): | |
"""A TorchScript-compatible version of forward. | |
Encoders which use additional arguments may want to override | |
this method for TorchScript compatibility. | |
""" | |
encoder_out = self.w2v_model.forward_torchscript(net_input) | |
assert self.proj is not None | |
encoder_out['encoder_out_for_ctc'] = [self.proj(encoder_out['encoder_out'][0])] | |
return encoder_out | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return None | |
def upgrade_state_dict_named(self, state_dict, name): | |
return state_dict | |