ContentAnalyzer / app.py
MHamdan's picture
app
c2c731a verified
raw
history blame
8.75 kB
import gradio as gr
import requests
import time
from bs4 import BeautifulSoup
from transformers import pipeline
import PyPDF2
import docx
import os
from typing import List, Optional
class ContentAnalyzer:
def __init__(self):
print("[DEBUG] Initializing pipelines...")
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.zero_shot = pipeline("zero-shot-classification")
print("[DEBUG] Pipelines initialized.")
def read_file(self, file_obj) -> str:
"""Read content from different file types."""
if file_obj is None:
return ""
file_ext = os.path.splitext(file_obj.name)[1].lower()
print(f"[DEBUG] File extension: {file_ext}")
try:
if file_ext == '.txt':
return file_obj.read().decode('utf-8')
elif file_ext == '.pdf':
pdf_reader = PyPDF2.PdfReader(file_obj)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
elif file_ext == '.docx':
doc = docx.Document(file_obj)
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
else:
return f"Unsupported file type: {file_ext}"
except Exception as e:
return f"Error reading file: {str(e)}"
def fetch_web_content(self, url: str) -> str:
"""Fetch content from URL."""
print(f"[DEBUG] Attempting to fetch URL: {url}")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove scripts and styles
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator='\n')
lines = (line.strip() for line in text.splitlines())
final_text = "\n".join(line for line in lines if line)
return final_text
except Exception as e:
return f"Error fetching URL: {str(e)}"
def analyze_content(
self,
content: str,
analysis_types: List[str],
) -> dict:
"""Perform summarization, sentiment analysis, and topic detection on `content`."""
results = {}
truncated = content[:1000] + "..." if len(content) > 1000 else content
results["original_text"] = truncated
# Summarize
if "summarize" in analysis_types:
summary = self.summarizer(content[:1024], max_length=130, min_length=30)
results["summary"] = summary[0]['summary_text']
# Sentiment
if "sentiment" in analysis_types:
sentiment = self.sentiment_analyzer(content[:512])
results["sentiment"] = {
"label": sentiment[0]['label'],
"score": round(sentiment[0]['score'], 3)
}
# Topics
if "topics" in analysis_types:
topics = self.zero_shot(
content[:512],
candidate_labels=[
"technology", "science", "business", "politics",
"entertainment", "education", "health", "sports"
]
)
results["topics"] = [
{"label": label, "score": round(score, 3)}
for label, score in zip(topics['labels'], topics['scores'])
if score > 0.1
]
return results
def create_interface():
analyzer = ContentAnalyzer()
with gr.Blocks(title="Content Analyzer") as demo:
gr.Markdown("# πŸ“‘ Content Analyzer")
gr.Markdown(
"Analyze text from **Text**, **URL**, or **File** with summarization, "
"sentiment, and topic detection. A progress bar will appear during processing."
)
# Dropdown for input type
input_choice = gr.Dropdown(
choices=["Text", "URL", "File"],
value="Text",
label="Select Input Type"
)
# We use three separate columns to conditionally display
with gr.Column(visible=True) as text_col:
text_input = gr.Textbox(
label="Enter Text",
placeholder="Paste your text here...",
lines=5
)
with gr.Column(visible=False) as url_col:
url_input = gr.Textbox(
label="Enter URL",
placeholder="https://example.com"
)
with gr.Column(visible=False) as file_col:
file_input = gr.File(
label="Upload File",
file_types=[".txt", ".pdf", ".docx"]
)
def show_inputs(choice):
"""Return a dict mapping columns to booleans for visibility."""
return {
text_col: choice == "Text",
url_col: choice == "URL",
file_col: choice == "File"
}
input_choice.change(
fn=show_inputs,
inputs=[input_choice],
outputs=[text_col, url_col, file_col]
)
analysis_types = gr.CheckboxGroup(
choices=["summarize", "sentiment", "topics"],
value=["summarize"],
label="Analysis Types"
)
analyze_btn = gr.Button("Analyze", variant="primary")
# Output tabs
with gr.Tabs():
with gr.Tab("Original Text"):
original_text = gr.Markdown()
with gr.Tab("Summary"):
summary_output = gr.Markdown()
with gr.Tab("Sentiment"):
sentiment_output = gr.Markdown()
with gr.Tab("Topics"):
topics_output = gr.Markdown()
def process_analysis(choice, text_val, url_val, file_val, types):
"""
This function does everything in one place using a 'with gr.Progress() as p:' block,
so we can show each step of the process. We add time.sleep(1) just to demonstrate
the progress bar (otherwise it may appear/disappear too quickly).
"""
with gr.Progress() as p:
# STEP 1: Retrieve content
p(0, total=4, desc="Reading input")
time.sleep(1) # For demonstration
if choice == "Text":
content = text_val or ""
elif choice == "URL":
content = analyzer.fetch_web_content(url_val or "")
else: # File
content = analyzer.read_file(file_val)
if not content or content.startswith("Error"):
return content or "No content provided", "", "", ""
# STEP 2: Summarize
p(1, total=4, desc="Summarizing content")
time.sleep(1) # For demonstration
# STEP 3: Sentiment
p(2, total=4, desc="Performing sentiment analysis")
time.sleep(1) # For demonstration
# STEP 4: Topics
p(3, total=4, desc="Identifying topics")
time.sleep(1) # For demonstration
# After the progress steps, do the actual analysis in one shot
# (You could interleave the calls to pipeline with each progress step
# if you want real-time progress. This is a simplified approach.)
results = analyzer.analyze_content(content, types)
if "error" in results:
return results["error"], "", "", ""
original = results.get("original_text", "")
summary = results.get("summary", "")
sentiment = ""
if "sentiment" in results:
s = results["sentiment"]
sentiment = f"**Sentiment:** {s['label']} (Confidence: {s['score']})"
topics = ""
if "topics" in results:
t_list = "\n".join([
f"- {t['label']}: {t['score']}"
for t in results["topics"]
])
topics = "**Detected Topics:**\n" + t_list
return original, summary, sentiment, topics
analyze_btn.click(
fn=process_analysis,
inputs=[input_choice, text_input, url_input, file_input, analysis_types],
outputs=[original_text, summary_output, sentiment_output, topics_output],
show_progress=True # This ensures the Gradio progress bar is enabled
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()