File size: 8,752 Bytes
5215be1
 
c2c731a
5215be1
 
 
 
 
523e9ce
5215be1
 
 
c2c731a
5215be1
 
 
c2c731a
18d6761
5215be1
 
 
 
 
c2c731a
5215be1
 
523e9ce
5215be1
 
 
 
 
 
 
 
523e9ce
5215be1
523e9ce
5215be1
523e9ce
5215be1
 
 
c2c731a
5215be1
 
 
 
c2c731a
5215be1
 
 
 
c2c731a
 
5215be1
523e9ce
18d6761
 
523e9ce
c2c731a
 
18d6761
c2c731a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5215be1
c2c731a
 
 
 
 
 
5215be1
c2c731a
523e9ce
18d6761
5215be1
 
18d6761
5215be1
 
c2c731a
 
 
 
18d6761
c2c731a
523e9ce
 
 
 
 
 
c2c731a
523e9ce
 
 
 
 
 
c2c731a
523e9ce
 
 
 
 
c2c731a
523e9ce
 
 
 
 
 
 
c2c731a
523e9ce
 
 
 
 
 
 
 
 
 
 
18d6761
5215be1
 
 
 
 
18d6761
5215be1
18d6761
c2c731a
5215be1
 
 
 
 
 
 
 
 
18d6761
c2c731a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d6761
5215be1
 
18d6761
5215be1
 
 
 
2af5feb
 
18d6761
5215be1
 
c2c731a
 
 
 
2af5feb
18d6761
5215be1
18d6761
5215be1
 
523e9ce
18d6761
c2c731a
5215be1
18d6761
5215be1
 
 
 
523e9ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import requests
import time
from bs4 import BeautifulSoup
from transformers import pipeline
import PyPDF2
import docx
import os
from typing import List, Optional

class ContentAnalyzer:
    def __init__(self):
        print("[DEBUG] Initializing pipelines...")
        self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        self.sentiment_analyzer = pipeline("sentiment-analysis")
        self.zero_shot = pipeline("zero-shot-classification")
        print("[DEBUG] Pipelines initialized.")

    def read_file(self, file_obj) -> str:
        """Read content from different file types."""
        if file_obj is None:
            return ""
        file_ext = os.path.splitext(file_obj.name)[1].lower()
        print(f"[DEBUG] File extension: {file_ext}")
        try:
            if file_ext == '.txt':
                return file_obj.read().decode('utf-8')
            elif file_ext == '.pdf':
                pdf_reader = PyPDF2.PdfReader(file_obj)
                text = ""
                for page in pdf_reader.pages:
                    text += page.extract_text() + "\n"
                return text
            elif file_ext == '.docx':
                doc = docx.Document(file_obj)
                return "\n".join([paragraph.text for paragraph in doc.paragraphs])
            else:
                return f"Unsupported file type: {file_ext}"
        except Exception as e:
            return f"Error reading file: {str(e)}"

    def fetch_web_content(self, url: str) -> str:
        """Fetch content from URL."""
        print(f"[DEBUG] Attempting to fetch URL: {url}")
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, 'html.parser')
            # Remove scripts and styles
            for script in soup(["script", "style"]):
                script.decompose()
            text = soup.get_text(separator='\n')
            lines = (line.strip() for line in text.splitlines())
            final_text = "\n".join(line for line in lines if line)
            return final_text
        except Exception as e:
            return f"Error fetching URL: {str(e)}"

    def analyze_content(
        self,
        content: str,
        analysis_types: List[str],
    ) -> dict:
        """Perform summarization, sentiment analysis, and topic detection on `content`."""
        results = {}
        truncated = content[:1000] + "..." if len(content) > 1000 else content
        results["original_text"] = truncated

        # Summarize
        if "summarize" in analysis_types:
            summary = self.summarizer(content[:1024], max_length=130, min_length=30)
            results["summary"] = summary[0]['summary_text']

        # Sentiment
        if "sentiment" in analysis_types:
            sentiment = self.sentiment_analyzer(content[:512])
            results["sentiment"] = {
                "label": sentiment[0]['label'],
                "score": round(sentiment[0]['score'], 3)
            }

        # Topics
        if "topics" in analysis_types:
            topics = self.zero_shot(
                content[:512],
                candidate_labels=[
                    "technology", "science", "business", "politics",
                    "entertainment", "education", "health", "sports"
                ]
            )
            results["topics"] = [
                {"label": label, "score": round(score, 3)}
                for label, score in zip(topics['labels'], topics['scores'])
                if score > 0.1
            ]

        return results


def create_interface():
    analyzer = ContentAnalyzer()

    with gr.Blocks(title="Content Analyzer") as demo:
        gr.Markdown("# πŸ“‘ Content Analyzer")
        gr.Markdown(
            "Analyze text from **Text**, **URL**, or **File** with summarization, "
            "sentiment, and topic detection. A progress bar will appear during processing."
        )

        # Dropdown for input type
        input_choice = gr.Dropdown(
            choices=["Text", "URL", "File"],
            value="Text",
            label="Select Input Type"
        )

        # We use three separate columns to conditionally display
        with gr.Column(visible=True) as text_col:
            text_input = gr.Textbox(
                label="Enter Text",
                placeholder="Paste your text here...",
                lines=5
            )

        with gr.Column(visible=False) as url_col:
            url_input = gr.Textbox(
                label="Enter URL",
                placeholder="https://example.com"
            )

        with gr.Column(visible=False) as file_col:
            file_input = gr.File(
                label="Upload File",
                file_types=[".txt", ".pdf", ".docx"]
            )

        def show_inputs(choice):
            """Return a dict mapping columns to booleans for visibility."""
            return {
                text_col: choice == "Text",
                url_col: choice == "URL",
                file_col: choice == "File"
            }

        input_choice.change(
            fn=show_inputs,
            inputs=[input_choice],
            outputs=[text_col, url_col, file_col]
        )

        analysis_types = gr.CheckboxGroup(
            choices=["summarize", "sentiment", "topics"],
            value=["summarize"],
            label="Analysis Types"
        )

        analyze_btn = gr.Button("Analyze", variant="primary")

        # Output tabs
        with gr.Tabs():
            with gr.Tab("Original Text"):
                original_text = gr.Markdown()
            with gr.Tab("Summary"):
                summary_output = gr.Markdown()
            with gr.Tab("Sentiment"):
                sentiment_output = gr.Markdown()
            with gr.Tab("Topics"):
                topics_output = gr.Markdown()

        def process_analysis(choice, text_val, url_val, file_val, types):
            """
            This function does everything in one place using a 'with gr.Progress() as p:' block,
            so we can show each step of the process. We add time.sleep(1) just to demonstrate
            the progress bar (otherwise it may appear/disappear too quickly).
            """
            with gr.Progress() as p:
                # STEP 1: Retrieve content
                p(0, total=4, desc="Reading input")
                time.sleep(1)  # For demonstration
                if choice == "Text":
                    content = text_val or ""
                elif choice == "URL":
                    content = analyzer.fetch_web_content(url_val or "")
                else:  # File
                    content = analyzer.read_file(file_val)

                if not content or content.startswith("Error"):
                    return content or "No content provided", "", "", ""

                # STEP 2: Summarize
                p(1, total=4, desc="Summarizing content")
                time.sleep(1)  # For demonstration

                # STEP 3: Sentiment
                p(2, total=4, desc="Performing sentiment analysis")
                time.sleep(1)  # For demonstration

                # STEP 4: Topics
                p(3, total=4, desc="Identifying topics")
                time.sleep(1)  # For demonstration

            # After the progress steps, do the actual analysis in one shot
            # (You could interleave the calls to pipeline with each progress step
            # if you want real-time progress. This is a simplified approach.)
            results = analyzer.analyze_content(content, types)

            if "error" in results:
                return results["error"], "", "", ""

            original = results.get("original_text", "")
            summary = results.get("summary", "")
            sentiment = ""
            if "sentiment" in results:
                s = results["sentiment"]
                sentiment = f"**Sentiment:** {s['label']} (Confidence: {s['score']})"

            topics = ""
            if "topics" in results:
                t_list = "\n".join([
                    f"- {t['label']}: {t['score']}"
                    for t in results["topics"]
                ])
                topics = "**Detected Topics:**\n" + t_list

            return original, summary, sentiment, topics

        analyze_btn.click(
            fn=process_analysis,
            inputs=[input_choice, text_input, url_input, file_input, analysis_types],
            outputs=[original_text, summary_output, sentiment_output, topics_output],
            show_progress=True  # This ensures the Gradio progress bar is enabled
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()