Spaces:
Running
Running
update app
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
from bs4 import BeautifulSoup
|
@@ -7,96 +5,62 @@ from transformers import pipeline
|
|
7 |
import PyPDF2
|
8 |
import docx
|
9 |
import os
|
10 |
-
import
|
11 |
-
from typing import List, Tuple, Optional
|
12 |
|
13 |
class ContentAnalyzer:
|
14 |
def __init__(self):
|
15 |
-
print("[DEBUG] Initializing pipelines...")
|
16 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
18 |
self.zero_shot = pipeline("zero-shot-classification")
|
19 |
-
print("[DEBUG] Pipelines initialized.")
|
20 |
|
21 |
def read_file(self, file_obj) -> str:
|
22 |
"""Read content from different file types."""
|
23 |
if file_obj is None:
|
24 |
-
print("[DEBUG] No file uploaded.")
|
25 |
return ""
|
26 |
-
|
27 |
file_ext = os.path.splitext(file_obj.name)[1].lower()
|
28 |
-
print(f"[DEBUG] Uploaded file extension detected: {file_ext}")
|
29 |
-
|
30 |
try:
|
31 |
if file_ext == '.txt':
|
32 |
-
|
33 |
-
print("[DEBUG] Successfully read .txt file.")
|
34 |
-
return content
|
35 |
-
|
36 |
elif file_ext == '.pdf':
|
37 |
-
# Note: For PyPDF2 >= 3.0.0, this usage is valid
|
38 |
pdf_reader = PyPDF2.PdfReader(file_obj)
|
39 |
text = ""
|
40 |
for page in pdf_reader.pages:
|
41 |
text += page.extract_text() + "\n"
|
42 |
-
print("[DEBUG] Successfully read .pdf file.")
|
43 |
return text
|
44 |
-
|
45 |
elif file_ext == '.docx':
|
46 |
doc = docx.Document(file_obj)
|
47 |
-
|
48 |
-
print("[DEBUG] Successfully read .docx file.")
|
49 |
-
return "\n".join(paragraphs)
|
50 |
-
|
51 |
else:
|
52 |
-
|
53 |
-
print("[DEBUG]", msg)
|
54 |
-
return msg
|
55 |
-
|
56 |
except Exception as e:
|
57 |
-
|
58 |
-
print("[DEBUG]", error_msg)
|
59 |
-
return error_msg
|
60 |
|
61 |
def fetch_web_content(self, url: str) -> str:
|
62 |
"""Fetch content from URL."""
|
63 |
-
print(f"[DEBUG] Attempting to fetch URL: {url}")
|
64 |
try:
|
65 |
response = requests.get(url, timeout=10)
|
66 |
response.raise_for_status()
|
67 |
soup = BeautifulSoup(response.text, 'html.parser')
|
68 |
-
|
69 |
-
# Remove scripts and styles
|
70 |
for script in soup(["script", "style"]):
|
71 |
script.decompose()
|
72 |
-
|
73 |
text = soup.get_text(separator='\n')
|
74 |
lines = (line.strip() for line in text.splitlines())
|
75 |
-
|
76 |
-
print("[DEBUG] Successfully fetched and cleaned web content.")
|
77 |
-
return final_text
|
78 |
-
|
79 |
except Exception as e:
|
80 |
-
|
81 |
-
print("[DEBUG]", error_msg)
|
82 |
-
return error_msg
|
83 |
|
84 |
def analyze_content(
|
85 |
-
self,
|
86 |
text: Optional[str] = None,
|
87 |
url: Optional[str] = None,
|
88 |
file: Optional[object] = None,
|
89 |
analysis_types: List[str] = ["summarize"],
|
90 |
progress_callback=None
|
91 |
) -> dict:
|
92 |
-
"""
|
93 |
-
Analyze content from text, URL, or file.
|
94 |
-
progress_callback is a function for updating progress steps.
|
95 |
-
"""
|
96 |
try:
|
97 |
-
#
|
98 |
if progress_callback:
|
99 |
-
progress_callback(1, "Reading input
|
100 |
|
101 |
if url:
|
102 |
content = self.fetch_web_content(url)
|
@@ -108,31 +72,30 @@ class ContentAnalyzer:
|
|
108 |
if not content or content.startswith("Error"):
|
109 |
return {"error": content or "No content provided"}
|
110 |
|
111 |
-
# Truncate for debug
|
112 |
truncated = content[:1000] + "..." if len(content) > 1000 else content
|
113 |
results = {"original_text": truncated}
|
114 |
|
115 |
-
#
|
116 |
if "summarize" in analysis_types:
|
117 |
if progress_callback:
|
118 |
-
progress_callback(2, "Summarizing content
|
119 |
summary = self.summarizer(content[:1024], max_length=130, min_length=30)
|
120 |
results["summary"] = summary[0]['summary_text']
|
121 |
|
122 |
-
#
|
123 |
if "sentiment" in analysis_types:
|
124 |
if progress_callback:
|
125 |
-
progress_callback(3, "Performing sentiment analysis
|
126 |
sentiment = self.sentiment_analyzer(content[:512])
|
127 |
results["sentiment"] = {
|
128 |
"label": sentiment[0]['label'],
|
129 |
"score": round(sentiment[0]['score'], 3)
|
130 |
}
|
131 |
|
132 |
-
#
|
133 |
if "topics" in analysis_types:
|
134 |
if progress_callback:
|
135 |
-
progress_callback(4, "Identifying topics
|
136 |
topics = self.zero_shot(
|
137 |
content[:512],
|
138 |
candidate_labels=[
|
@@ -149,9 +112,8 @@ class ContentAnalyzer:
|
|
149 |
return results
|
150 |
|
151 |
except Exception as e:
|
152 |
-
|
153 |
-
|
154 |
-
return {"error": error_msg}
|
155 |
|
156 |
def create_interface():
|
157 |
analyzer = ContentAnalyzer()
|
@@ -160,12 +122,47 @@ def create_interface():
|
|
160 |
gr.Markdown("# 📑 Content Analyzer")
|
161 |
gr.Markdown("Analyze text content from various sources using AI.")
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
|
|
169 |
analysis_types = gr.CheckboxGroup(
|
170 |
choices=["summarize", "sentiment", "topics"],
|
171 |
value=["summarize"],
|
@@ -174,6 +171,7 @@ def create_interface():
|
|
174 |
|
175 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
176 |
|
|
|
177 |
with gr.Tabs():
|
178 |
with gr.Tab("Original Text"):
|
179 |
original_text = gr.Markdown()
|
@@ -184,22 +182,32 @@ def create_interface():
|
|
184 |
with gr.Tab("Topics"):
|
185 |
topics_output = gr.Markdown()
|
186 |
|
187 |
-
def process_analysis(text, url, file, types, progress=gr.Progress()):
|
|
|
188 |
steps_total = 4
|
189 |
|
190 |
def progress_callback(step: int, desc: str):
|
191 |
-
"""
|
192 |
-
step: integer step index (1 to steps_total)
|
193 |
-
desc: a short description of the current step
|
194 |
-
"""
|
195 |
-
# Pass the integer 'step' as iteration, and the string 'desc' as desc.
|
196 |
progress(step, total=steps_total, desc=desc)
|
197 |
|
198 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
results = analyzer.analyze_content(
|
200 |
-
text=
|
201 |
-
url=
|
202 |
-
file=
|
203 |
analysis_types=types,
|
204 |
progress_callback=progress_callback
|
205 |
)
|
@@ -224,7 +232,7 @@ def create_interface():
|
|
224 |
|
225 |
analyze_btn.click(
|
226 |
fn=process_analysis,
|
227 |
-
inputs=[text_input, url_input, file_input, analysis_types],
|
228 |
outputs=[original_text, summary_output, sentiment_output, topics_output],
|
229 |
show_progress=True
|
230 |
)
|
@@ -233,4 +241,4 @@ def create_interface():
|
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
demo = create_interface()
|
236 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
|
|
5 |
import PyPDF2
|
6 |
import docx
|
7 |
import os
|
8 |
+
from typing import List, Optional
|
|
|
9 |
|
10 |
class ContentAnalyzer:
|
11 |
def __init__(self):
|
|
|
12 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
13 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
14 |
self.zero_shot = pipeline("zero-shot-classification")
|
|
|
15 |
|
16 |
def read_file(self, file_obj) -> str:
|
17 |
"""Read content from different file types."""
|
18 |
if file_obj is None:
|
|
|
19 |
return ""
|
|
|
20 |
file_ext = os.path.splitext(file_obj.name)[1].lower()
|
|
|
|
|
21 |
try:
|
22 |
if file_ext == '.txt':
|
23 |
+
return file_obj.read().decode('utf-8')
|
|
|
|
|
|
|
24 |
elif file_ext == '.pdf':
|
|
|
25 |
pdf_reader = PyPDF2.PdfReader(file_obj)
|
26 |
text = ""
|
27 |
for page in pdf_reader.pages:
|
28 |
text += page.extract_text() + "\n"
|
|
|
29 |
return text
|
|
|
30 |
elif file_ext == '.docx':
|
31 |
doc = docx.Document(file_obj)
|
32 |
+
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
|
|
|
|
|
|
33 |
else:
|
34 |
+
return f"Unsupported file type: {file_ext}"
|
|
|
|
|
|
|
35 |
except Exception as e:
|
36 |
+
return f"Error reading file: {str(e)}"
|
|
|
|
|
37 |
|
38 |
def fetch_web_content(self, url: str) -> str:
|
39 |
"""Fetch content from URL."""
|
|
|
40 |
try:
|
41 |
response = requests.get(url, timeout=10)
|
42 |
response.raise_for_status()
|
43 |
soup = BeautifulSoup(response.text, 'html.parser')
|
|
|
|
|
44 |
for script in soup(["script", "style"]):
|
45 |
script.decompose()
|
|
|
46 |
text = soup.get_text(separator='\n')
|
47 |
lines = (line.strip() for line in text.splitlines())
|
48 |
+
return "\n".join(line for line in lines if line)
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
+
return f"Error fetching URL: {str(e)}"
|
|
|
|
|
51 |
|
52 |
def analyze_content(
|
53 |
+
self,
|
54 |
text: Optional[str] = None,
|
55 |
url: Optional[str] = None,
|
56 |
file: Optional[object] = None,
|
57 |
analysis_types: List[str] = ["summarize"],
|
58 |
progress_callback=None
|
59 |
) -> dict:
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
+
# STEP 1: Retrieve content
|
62 |
if progress_callback:
|
63 |
+
progress_callback(1, "Reading input")
|
64 |
|
65 |
if url:
|
66 |
content = self.fetch_web_content(url)
|
|
|
72 |
if not content or content.startswith("Error"):
|
73 |
return {"error": content or "No content provided"}
|
74 |
|
|
|
75 |
truncated = content[:1000] + "..." if len(content) > 1000 else content
|
76 |
results = {"original_text": truncated}
|
77 |
|
78 |
+
# STEP 2: Summarize
|
79 |
if "summarize" in analysis_types:
|
80 |
if progress_callback:
|
81 |
+
progress_callback(2, "Summarizing content")
|
82 |
summary = self.summarizer(content[:1024], max_length=130, min_length=30)
|
83 |
results["summary"] = summary[0]['summary_text']
|
84 |
|
85 |
+
# STEP 3: Sentiment
|
86 |
if "sentiment" in analysis_types:
|
87 |
if progress_callback:
|
88 |
+
progress_callback(3, "Performing sentiment analysis")
|
89 |
sentiment = self.sentiment_analyzer(content[:512])
|
90 |
results["sentiment"] = {
|
91 |
"label": sentiment[0]['label'],
|
92 |
"score": round(sentiment[0]['score'], 3)
|
93 |
}
|
94 |
|
95 |
+
# STEP 4: Topics
|
96 |
if "topics" in analysis_types:
|
97 |
if progress_callback:
|
98 |
+
progress_callback(4, "Identifying topics")
|
99 |
topics = self.zero_shot(
|
100 |
content[:512],
|
101 |
candidate_labels=[
|
|
|
112 |
return results
|
113 |
|
114 |
except Exception as e:
|
115 |
+
return {"error": f"Analysis error: {str(e)}"}
|
116 |
+
|
|
|
117 |
|
118 |
def create_interface():
|
119 |
analyzer = ContentAnalyzer()
|
|
|
122 |
gr.Markdown("# 📑 Content Analyzer")
|
123 |
gr.Markdown("Analyze text content from various sources using AI.")
|
124 |
|
125 |
+
# Dropdown to choose input type
|
126 |
+
input_choice = gr.Dropdown(
|
127 |
+
choices=["Text", "URL", "File"],
|
128 |
+
value="Text",
|
129 |
+
label="Select Input Type"
|
130 |
+
)
|
131 |
+
|
132 |
+
# Containers for each input type
|
133 |
+
with gr.Column(visible=True) as text_col:
|
134 |
+
text_input = gr.Textbox(
|
135 |
+
label="Enter Text",
|
136 |
+
placeholder="Paste your text here...",
|
137 |
+
lines=5
|
138 |
+
)
|
139 |
+
with gr.Column(visible=False) as url_col:
|
140 |
+
url_input = gr.Textbox(
|
141 |
+
label="Enter URL",
|
142 |
+
placeholder="https://example.com"
|
143 |
+
)
|
144 |
+
with gr.Column(visible=False) as file_col:
|
145 |
+
file_input = gr.File(
|
146 |
+
label="Upload File",
|
147 |
+
file_types=[".txt", ".pdf", ".docx"]
|
148 |
+
)
|
149 |
+
|
150 |
+
# Callback function to show/hide input columns
|
151 |
+
def show_inputs(choice):
|
152 |
+
return {
|
153 |
+
text_col: choice == "Text",
|
154 |
+
url_col: choice == "URL",
|
155 |
+
file_col: choice == "File"
|
156 |
+
}
|
157 |
+
|
158 |
+
# Trigger showing/hiding based on the dropdown choice
|
159 |
+
input_choice.change(
|
160 |
+
fn=show_inputs,
|
161 |
+
inputs=[input_choice],
|
162 |
+
outputs=[text_col, url_col, file_col]
|
163 |
+
)
|
164 |
|
165 |
+
# Analysis Options
|
166 |
analysis_types = gr.CheckboxGroup(
|
167 |
choices=["summarize", "sentiment", "topics"],
|
168 |
value=["summarize"],
|
|
|
171 |
|
172 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
173 |
|
174 |
+
# Output Sections in tabs
|
175 |
with gr.Tabs():
|
176 |
with gr.Tab("Original Text"):
|
177 |
original_text = gr.Markdown()
|
|
|
182 |
with gr.Tab("Topics"):
|
183 |
topics_output = gr.Markdown()
|
184 |
|
185 |
+
def process_analysis(choice, text, url, file, types, progress=gr.Progress()):
|
186 |
+
"""Orchestrates analysis depending on input choice."""
|
187 |
steps_total = 4
|
188 |
|
189 |
def progress_callback(step: int, desc: str):
|
|
|
|
|
|
|
|
|
|
|
190 |
progress(step, total=steps_total, desc=desc)
|
191 |
|
192 |
+
# Determine which content to pass based on the input choice
|
193 |
+
if choice == "Text":
|
194 |
+
content_text = text
|
195 |
+
content_url = None
|
196 |
+
content_file = None
|
197 |
+
elif choice == "URL":
|
198 |
+
content_text = None
|
199 |
+
content_url = url
|
200 |
+
content_file = None
|
201 |
+
else: # choice == "File"
|
202 |
+
content_text = None
|
203 |
+
content_url = None
|
204 |
+
content_file = file
|
205 |
+
|
206 |
+
# Perform analysis
|
207 |
results = analyzer.analyze_content(
|
208 |
+
text=content_text,
|
209 |
+
url=content_url,
|
210 |
+
file=content_file,
|
211 |
analysis_types=types,
|
212 |
progress_callback=progress_callback
|
213 |
)
|
|
|
232 |
|
233 |
analyze_btn.click(
|
234 |
fn=process_analysis,
|
235 |
+
inputs=[input_choice, text_input, url_input, file_input, analysis_types],
|
236 |
outputs=[original_text, summary_output, sentiment_output, topics_output],
|
237 |
show_progress=True
|
238 |
)
|
|
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
demo = create_interface()
|
244 |
+
demo.launch()
|