Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -153,7 +153,6 @@ class ContentAnalyzer:
|
|
153 |
print("[DEBUG]", error_msg)
|
154 |
return {"error": error_msg}
|
155 |
|
156 |
-
|
157 |
def create_interface():
|
158 |
analyzer = ContentAnalyzer()
|
159 |
|
@@ -162,29 +161,11 @@ def create_interface():
|
|
162 |
gr.Markdown("Analyze text content from various sources using AI.")
|
163 |
|
164 |
with gr.Tabs():
|
165 |
-
# Text Input
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
placeholder="Paste your text here...",
|
170 |
-
lines=5
|
171 |
-
)
|
172 |
-
|
173 |
-
# URL Input Tab
|
174 |
-
with gr.Tab("Web URL"):
|
175 |
-
url_input = gr.Textbox(
|
176 |
-
label="Enter URL",
|
177 |
-
placeholder="https://example.com"
|
178 |
-
)
|
179 |
|
180 |
-
# File Upload Tab
|
181 |
-
with gr.Tab("File Upload"):
|
182 |
-
file_input = gr.File(
|
183 |
-
label="Upload File",
|
184 |
-
file_types=[".txt", ".pdf", ".docx"]
|
185 |
-
)
|
186 |
-
|
187 |
-
# Analysis Options
|
188 |
analysis_types = gr.CheckboxGroup(
|
189 |
choices=["summarize", "sentiment", "topics"],
|
190 |
value=["summarize"],
|
@@ -193,7 +174,6 @@ def create_interface():
|
|
193 |
|
194 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
195 |
|
196 |
-
# Output Sections
|
197 |
with gr.Tabs():
|
198 |
with gr.Tab("Original Text"):
|
199 |
original_text = gr.Markdown()
|
@@ -205,15 +185,17 @@ def create_interface():
|
|
205 |
topics_output = gr.Markdown()
|
206 |
|
207 |
def process_analysis(text, url, file, types, progress=gr.Progress()):
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
217 |
results = analyzer.analyze_content(
|
218 |
text=text,
|
219 |
url=url,
|
@@ -222,26 +204,21 @@ def create_interface():
|
|
222 |
progress_callback=progress_callback
|
223 |
)
|
224 |
|
225 |
-
# If there's an error, show it in "Original Text" tab for clarity
|
226 |
if "error" in results:
|
227 |
return results["error"], "", "", ""
|
228 |
|
229 |
# Format outputs
|
230 |
original = results.get("original_text", "")
|
231 |
summary = results.get("summary", "")
|
232 |
-
|
233 |
sentiment = ""
|
234 |
if "sentiment" in results:
|
235 |
-
|
236 |
-
sentiment = f"**Sentiment:** {
|
237 |
|
238 |
topics = ""
|
239 |
if "topics" in results:
|
240 |
-
|
241 |
-
|
242 |
-
for t in results["topics"]
|
243 |
-
])
|
244 |
-
topics = "**Detected Topics:**\n" + topics_list
|
245 |
|
246 |
return original, summary, sentiment, topics
|
247 |
|
@@ -249,11 +226,11 @@ def create_interface():
|
|
249 |
fn=process_analysis,
|
250 |
inputs=[text_input, url_input, file_input, analysis_types],
|
251 |
outputs=[original_text, summary_output, sentiment_output, topics_output],
|
252 |
-
show_progress=True
|
253 |
)
|
254 |
|
255 |
return demo
|
256 |
|
257 |
if __name__ == "__main__":
|
258 |
demo = create_interface()
|
259 |
-
demo.launch()
|
|
|
153 |
print("[DEBUG]", error_msg)
|
154 |
return {"error": error_msg}
|
155 |
|
|
|
156 |
def create_interface():
|
157 |
analyzer = ContentAnalyzer()
|
158 |
|
|
|
161 |
gr.Markdown("Analyze text content from various sources using AI.")
|
162 |
|
163 |
with gr.Tabs():
|
164 |
+
# Tabs for Text Input, Web URL, File Upload...
|
165 |
+
text_input = gr.Textbox(label="Enter Text", placeholder="Paste your text here...", lines=5)
|
166 |
+
url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com")
|
167 |
+
file_input = gr.File(label="Upload File", file_types=[".txt", ".pdf", ".docx"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
analysis_types = gr.CheckboxGroup(
|
170 |
choices=["summarize", "sentiment", "topics"],
|
171 |
value=["summarize"],
|
|
|
174 |
|
175 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
176 |
|
|
|
177 |
with gr.Tabs():
|
178 |
with gr.Tab("Original Text"):
|
179 |
original_text = gr.Markdown()
|
|
|
185 |
topics_output = gr.Markdown()
|
186 |
|
187 |
def process_analysis(text, url, file, types, progress=gr.Progress()):
|
188 |
+
steps_total = 4
|
189 |
+
|
190 |
+
def progress_callback(step: int, desc: str):
|
191 |
+
"""
|
192 |
+
step: integer step index (1 to steps_total)
|
193 |
+
desc: a short description of the current step
|
194 |
+
"""
|
195 |
+
# Pass the integer 'step' as iteration, and the string 'desc' as desc.
|
196 |
+
progress(step, total=steps_total, desc=desc)
|
197 |
+
|
198 |
+
# Call your analyzer
|
199 |
results = analyzer.analyze_content(
|
200 |
text=text,
|
201 |
url=url,
|
|
|
204 |
progress_callback=progress_callback
|
205 |
)
|
206 |
|
|
|
207 |
if "error" in results:
|
208 |
return results["error"], "", "", ""
|
209 |
|
210 |
# Format outputs
|
211 |
original = results.get("original_text", "")
|
212 |
summary = results.get("summary", "")
|
|
|
213 |
sentiment = ""
|
214 |
if "sentiment" in results:
|
215 |
+
s = results["sentiment"]
|
216 |
+
sentiment = f"**Sentiment:** {s['label']} (Confidence: {s['score']})"
|
217 |
|
218 |
topics = ""
|
219 |
if "topics" in results:
|
220 |
+
t_list = "\n".join([f"- {t['label']}: {t['score']}" for t in results["topics"]])
|
221 |
+
topics = "**Detected Topics:**\n" + t_list
|
|
|
|
|
|
|
222 |
|
223 |
return original, summary, sentiment, topics
|
224 |
|
|
|
226 |
fn=process_analysis,
|
227 |
inputs=[text_input, url_input, file_input, analysis_types],
|
228 |
outputs=[original_text, summary_output, sentiment_output, topics_output],
|
229 |
+
show_progress=True
|
230 |
)
|
231 |
|
232 |
return demo
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
demo = create_interface()
|
236 |
+
demo.launch()
|