File size: 5,363 Bytes
265b6a6
 
7eed016
300162c
 
 
5952adf
300162c
5952adf
265b6a6
300162c
 
265b6a6
5952adf
300162c
 
7eed016
300162c
7eed016
 
300162c
 
 
 
 
 
 
 
7eed016
300162c
 
5952adf
300162c
 
7eed016
 
300162c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265b6a6
300162c
 
 
5952adf
300162c
 
 
 
 
 
 
 
 
 
 
265b6a6
300162c
 
 
 
 
 
 
 
 
265b6a6
300162c
265b6a6
300162c
 
 
 
 
 
 
 
 
 
 
 
 
265b6a6
300162c
265b6a6
300162c
265b6a6
300162c
265b6a6
300162c
265b6a6
 
 
 
 
 
300162c
265b6a6
300162c
5952adf
300162c
 
 
 
 
 
 
 
 
 
265b6a6
300162c
265b6a6
5952adf
265b6a6
300162c
 
265b6a6
300162c
 
 
 
 
 
265b6a6
 
 
300162c
5952adf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Gradio_UI.py
import gradio as gr
import requests
from bs4 import BeautifulSoup
import logging
from typing import List, Tuple

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class WebAnalyzer:
    def __init__(self, agent):
        self.agent = agent

    def fetch_webpage(self, url: str) -> str:
        """Fetch and extract text content from a webpage."""
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, 'html.parser')
            # Remove script and style elements
            for script in soup(["script", "style"]):
                script.decompose()
            text = soup.get_text(separator='\n')
            # Clean up whitespace
            lines = (line.strip() for line in text.splitlines())
            text = '\n'.join(line for line in lines if line)
            return text
        except Exception as e:
            logger.error(f"Error fetching webpage: {e}")
            return f"Error: Failed to fetch webpage - {str(e)}"

    def analyze_content(self, url: str, analysis_types: List[str]) -> Tuple[str, str, str, str]:
        """Analyze webpage content based on selected analysis types."""
        try:
            # Fetch content
            content = self.fetch_webpage(url)
            if content.startswith("Error:"):
                return content, "", "", ""

            # Initialize results
            clean_text = content[:2000] + "..." if len(content) > 2000 else content
            summary = ""
            sentiment = ""
            topics = ""

            # Perform selected analyses
            if "summarize" in analysis_types:
                summary = self.agent.run(f"Please summarize this text concisely: {clean_text}")

            if "sentiment" in analysis_types:
                sentiment = self.agent.run(f"Analyze the sentiment of this text: {clean_text}")

            if "topics" in analysis_types:
                topics = self.agent.run(f"Identify and list the main topics in this text: {clean_text}")

            return clean_text, summary, sentiment, topics

        except Exception as e:
            error_msg = f"Error during analysis: {str(e)}"
            logger.error(error_msg)
            return error_msg, "", "", ""

class GradioUI:
    def __init__(self, agent):
        self.analyzer = WebAnalyzer(agent)

    def create_interface(self):
        """Create the Gradio interface."""
        # Create interface components
        url_input = gr.Textbox(
            label="Enter URL",
            placeholder="https://example.com"
        )
        
        analysis_types = gr.CheckboxGroup(
            choices=["summarize", "sentiment", "topics"],
            value=["summarize"],
            label="Analysis Types"
        )

        # Create output components
        with gr.Blocks() as demo:
            gr.Markdown("# Smart Web Analyzer Plus")
            gr.Markdown("Analyze web content using AI to extract summaries, determine sentiment, and identify topics.")

            with gr.Row():
                with gr.Column(scale=4):
                    url_input.render()
                with gr.Column(scale=2):
                    analysis_types.render()
                with gr.Column(scale=1):
                    analyze_button = gr.Button("Analyze", variant="primary")

            # Status indicator
            status = gr.Markdown(visible=False)

            # Output tabs
            with gr.Tabs():
                with gr.Tab("Clean Text"):
                    clean_text_output = gr.Markdown()
                with gr.Tab("Summary"):
                    summary_output = gr.Markdown()
                with gr.Tab("Sentiment"):
                    sentiment_output = gr.Markdown()
                with gr.Tab("Topics"):
                    topics_output = gr.Markdown()

            # Examples
            gr.Examples(
                examples=[
                    ["https://www.bbc.com/news/technology-67881954", ["summarize", "sentiment"]],
                    ["https://arxiv.org/html/2312.17296v1", ["topics", "summarize"]]
                ],
                inputs=[url_input, analysis_types],
            )

            # Event handlers
            def on_analyze_click(url, types):
                if not url:
                    return "Please enter a URL", "", "", ""
                if not types:
                    return "Please select at least one analysis type", "", "", ""
                return self.analyzer.analyze_content(url, types)

            analyze_button.click(
                fn=lambda: gr.Markdown("⏳ Analysis in progress...", visible=True),
                outputs=[status]
            ).then(
                fn=on_analyze_click,
                inputs=[url_input, analysis_types],
                outputs=[clean_text_output, summary_output, sentiment_output, topics_output]
            ).then(
                fn=lambda: gr.Markdown("", visible=False),
                outputs=[status]
            )

        return demo

    def launch(self, server_name=None, server_port=None, share=False):
        """Launch the Gradio interface."""
        demo = self.create_interface()
        demo.launch(
            server_name=server_name,
            server_port=server_port,
            share=share
        )