SmartWebAnalyzerPlus / Gradio_UI.py
MHamdan's picture
Initial commit with full functionality extend app req tools
300162c
# Gradio_UI.py
import gradio as gr
import requests
from bs4 import BeautifulSoup
import logging
from typing import List, Tuple
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class WebAnalyzer:
def __init__(self, agent):
self.agent = agent
def fetch_webpage(self, url: str) -> str:
"""Fetch and extract text content from a webpage."""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator='\n')
# Clean up whitespace
lines = (line.strip() for line in text.splitlines())
text = '\n'.join(line for line in lines if line)
return text
except Exception as e:
logger.error(f"Error fetching webpage: {e}")
return f"Error: Failed to fetch webpage - {str(e)}"
def analyze_content(self, url: str, analysis_types: List[str]) -> Tuple[str, str, str, str]:
"""Analyze webpage content based on selected analysis types."""
try:
# Fetch content
content = self.fetch_webpage(url)
if content.startswith("Error:"):
return content, "", "", ""
# Initialize results
clean_text = content[:2000] + "..." if len(content) > 2000 else content
summary = ""
sentiment = ""
topics = ""
# Perform selected analyses
if "summarize" in analysis_types:
summary = self.agent.run(f"Please summarize this text concisely: {clean_text}")
if "sentiment" in analysis_types:
sentiment = self.agent.run(f"Analyze the sentiment of this text: {clean_text}")
if "topics" in analysis_types:
topics = self.agent.run(f"Identify and list the main topics in this text: {clean_text}")
return clean_text, summary, sentiment, topics
except Exception as e:
error_msg = f"Error during analysis: {str(e)}"
logger.error(error_msg)
return error_msg, "", "", ""
class GradioUI:
def __init__(self, agent):
self.analyzer = WebAnalyzer(agent)
def create_interface(self):
"""Create the Gradio interface."""
# Create interface components
url_input = gr.Textbox(
label="Enter URL",
placeholder="https://example.com"
)
analysis_types = gr.CheckboxGroup(
choices=["summarize", "sentiment", "topics"],
value=["summarize"],
label="Analysis Types"
)
# Create output components
with gr.Blocks() as demo:
gr.Markdown("# Smart Web Analyzer Plus")
gr.Markdown("Analyze web content using AI to extract summaries, determine sentiment, and identify topics.")
with gr.Row():
with gr.Column(scale=4):
url_input.render()
with gr.Column(scale=2):
analysis_types.render()
with gr.Column(scale=1):
analyze_button = gr.Button("Analyze", variant="primary")
# Status indicator
status = gr.Markdown(visible=False)
# Output tabs
with gr.Tabs():
with gr.Tab("Clean Text"):
clean_text_output = gr.Markdown()
with gr.Tab("Summary"):
summary_output = gr.Markdown()
with gr.Tab("Sentiment"):
sentiment_output = gr.Markdown()
with gr.Tab("Topics"):
topics_output = gr.Markdown()
# Examples
gr.Examples(
examples=[
["https://www.bbc.com/news/technology-67881954", ["summarize", "sentiment"]],
["https://arxiv.org/html/2312.17296v1", ["topics", "summarize"]]
],
inputs=[url_input, analysis_types],
)
# Event handlers
def on_analyze_click(url, types):
if not url:
return "Please enter a URL", "", "", ""
if not types:
return "Please select at least one analysis type", "", "", ""
return self.analyzer.analyze_content(url, types)
analyze_button.click(
fn=lambda: gr.Markdown("⏳ Analysis in progress...", visible=True),
outputs=[status]
).then(
fn=on_analyze_click,
inputs=[url_input, analysis_types],
outputs=[clean_text_output, summary_output, sentiment_output, topics_output]
).then(
fn=lambda: gr.Markdown("", visible=False),
outputs=[status]
)
return demo
def launch(self, server_name=None, server_port=None, share=False):
"""Launch the Gradio interface."""
demo = self.create_interface()
demo.launch(
server_name=server_name,
server_port=server_port,
share=share
)