Spaces:
Runtime error
Runtime error
# app.py | |
""" | |
Gradio App for Smart Web Analyzer Plus - Human-Readable Outputs | |
Key Features: | |
- Accepts a URL | |
- Lets users select analysis modes (Clean Text, Summarization, Sentiment, Topic) | |
- Fetches and processes content (smart_web_analyzer.py) | |
- Displays each result in its own tab for readability | |
- Includes example URLs | |
""" | |
import gradio as gr | |
from smart_web_analyzer import ( | |
fetch_web_content, | |
clean_text, | |
summarize_text, | |
analyze_sentiment, | |
detect_topic, | |
preview_clean_text, | |
) | |
def analyze_url(url, modes): | |
""" | |
Fetches web content and performs selected analyses (modes). | |
Parameters: | |
url (str): URL to analyze | |
modes (list): list of selected modes | |
Returns: | |
tuple of str: (clean_text_result, summarization_result, sentiment_result, topics_result) | |
""" | |
# Default messages if a mode is not selected | |
clean_text_result = "Mode not selected." | |
summarization_result = "Mode not selected." | |
sentiment_result = "Mode not selected." | |
topics_result = "Mode not selected." | |
# 1) Fetch/clean the web content | |
try: | |
html_content = fetch_web_content(url) | |
except Exception as e: | |
# Return the error in each field for clarity | |
error_msg = f"**Error fetching URL**: {e}" | |
return (error_msg, error_msg, error_msg, error_msg) | |
# Clean the text (keeping <script> and <style>) | |
cleaned = clean_text(html_content) | |
# 2) If the user requested a text preview | |
if "Clean Text Preview" in modes: | |
clean_text_result = preview_clean_text(cleaned, max_chars=500) | |
# 3) Summarization | |
if "Summarization" in modes: | |
result = summarize_text(cleaned) | |
# If the result starts with "Error", we can highlight it | |
if isinstance(result, str) and "Error" in result: | |
summarization_result = f"**Error during summarization**: {result}" | |
else: | |
summarization_result = result | |
# 4) Sentiment Analysis | |
if "Sentiment Analysis" in modes: | |
result = analyze_sentiment(cleaned) | |
if isinstance(result, str) and "Error" in result: | |
sentiment_result = f"**Error during sentiment analysis**: {result}" | |
else: | |
sentiment_result = f"**Predicted Sentiment**: {result}" | |
# 5) Topic Detection | |
if "Topic Detection" in modes: | |
topics = detect_topic(cleaned) | |
# Check if there's an error | |
if isinstance(topics, dict) and "error" in topics: | |
topics_result = f"**Error during topic detection**: {topics['error']}" | |
else: | |
# Format the topics into a readable string | |
formatted = "" | |
for t, score in topics.items(): | |
formatted += f"- **{t}**: {score:.2f}\n" | |
topics_result = formatted if formatted else "No topics detected." | |
return (clean_text_result, summarization_result, sentiment_result, topics_result) | |
def build_app(): | |
with gr.Blocks(title="Smart Web Analyzer Plus") as demo: | |
gr.Markdown("## Smart Web Analyzer Plus\n" | |
"Analyze web content for **summarization**, **sentiment**, and **topics**. " | |
"Choose your analysis modes and enter a URL below.") | |
with gr.Row(): | |
url_input = gr.Textbox( | |
label="Enter URL", | |
placeholder="https://example.com", | |
lines=1 | |
) | |
mode_selector = gr.CheckboxGroup( | |
label="Select Analysis Modes", | |
choices=["Clean Text Preview", "Summarization", "Sentiment Analysis", "Topic Detection"], | |
value=["Clean Text Preview", "Summarization", "Sentiment Analysis", "Topic Detection"] | |
) | |
# We'll display results in separate tabs for clarity | |
with gr.Tabs(): | |
with gr.Tab("Clean Text Preview"): | |
preview_output = gr.Markdown() | |
with gr.Tab("Summarization"): | |
summary_output = gr.Markdown() | |
with gr.Tab("Sentiment Analysis"): | |
sentiment_output = gr.Markdown() | |
with gr.Tab("Topic Detection"): | |
topic_output = gr.Markdown() | |
analyze_button = gr.Button("Analyze") | |
# The "analyze_url" function returns a tuple of four strings | |
analyze_button.click( | |
fn=analyze_url, | |
inputs=[url_input, mode_selector], | |
outputs=[preview_output, summary_output, sentiment_output, topic_output] | |
) | |
# Example URLs | |
gr.Markdown("### Example URLs") | |
gr.Examples( | |
examples=[ | |
["https://www.artificialintelligence-news.com/2024/02/14/openai-anthropic-google-white-house-red-teaming/"], | |
["https://www.artificialintelligence-news.com/2024/02/13/ai-21-labs-wordtune-chatgpt-plugin/"] | |
], | |
inputs=url_input, | |
label="Click an example to analyze" | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = build_app() | |
demo.launch() | |