Spaces:
Running
Running
Paul Hager
commited on
Commit
·
5fdb95f
1
Parent(s):
5f8b961
check
Browse files- app.py +27 -24
- src/populate.py +1 -18
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
@@ -74,43 +74,49 @@ LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCH
|
|
74 |
def init_leaderboard(dataframe):
|
75 |
if dataframe is None or dataframe.empty:
|
76 |
print("Warning: Empty dataframe provided to leaderboard")
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
print(f"Initializing leaderboard with {len(dataframe)} rows")
|
81 |
print(f"Columns: {dataframe.columns.tolist()}")
|
82 |
|
83 |
-
# Convert dataframe to ensure proper types
|
84 |
-
for col in dataframe.columns:
|
85 |
-
if col in ["average", "params"] + [t.value.col_name for t in Tasks]:
|
86 |
-
dataframe[col] = pd.to_numeric(dataframe[col], errors="coerce")
|
87 |
-
elif col == "still_on_hub":
|
88 |
-
dataframe[col] = dataframe[col].astype(bool)
|
89 |
-
else:
|
90 |
-
dataframe[col] = dataframe[col].astype(str)
|
91 |
-
|
92 |
try:
|
93 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
except Exception as e:
|
95 |
print(f"Error initializing leaderboard: {e}")
|
96 |
-
return gr.Dataframe(
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
-
# Initialize the app
|
100 |
demo = gr.Blocks(css=custom_css)
|
101 |
-
|
102 |
with demo:
|
103 |
gr.HTML(TITLE)
|
104 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
105 |
|
106 |
-
with gr.Tabs() as tabs:
|
107 |
-
with gr.
|
108 |
leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)
|
109 |
|
110 |
-
with gr.
|
111 |
leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)
|
112 |
|
113 |
-
with gr.
|
114 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
115 |
|
116 |
with gr.Row():
|
@@ -123,10 +129,7 @@ with demo:
|
|
123 |
show_copy_button=True,
|
124 |
)
|
125 |
|
126 |
-
# Start the scheduler
|
127 |
scheduler = BackgroundScheduler()
|
128 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
129 |
scheduler.start()
|
130 |
-
|
131 |
-
# Launch the app
|
132 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
|
|
74 |
def init_leaderboard(dataframe):
|
75 |
if dataframe is None or dataframe.empty:
|
76 |
print("Warning: Empty dataframe provided to leaderboard")
|
77 |
+
return gr.Dataframe(
|
78 |
+
headers=COLS, datatype=[c.type for c in fields(AutoEvalColumn)], label="No results available"
|
79 |
+
)
|
80 |
|
81 |
print(f"Initializing leaderboard with {len(dataframe)} rows")
|
82 |
print(f"Columns: {dataframe.columns.tolist()}")
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
try:
|
85 |
+
return Leaderboard(
|
86 |
+
value=dataframe,
|
87 |
+
headers=COLS, # Explicitly specify headers
|
88 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
89 |
+
select_columns=SelectColumns(
|
90 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
91 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
92 |
+
label="Select Columns to Display:",
|
93 |
+
),
|
94 |
+
search_columns=[AutoEvalColumn.model.name],
|
95 |
+
interactive=False,
|
96 |
+
)
|
97 |
except Exception as e:
|
98 |
print(f"Error initializing leaderboard: {e}")
|
99 |
+
return gr.Dataframe(
|
100 |
+
value=dataframe,
|
101 |
+
headers=COLS,
|
102 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
103 |
+
label="Error loading interactive leaderboard",
|
104 |
+
)
|
105 |
|
106 |
|
|
|
107 |
demo = gr.Blocks(css=custom_css)
|
|
|
108 |
with demo:
|
109 |
gr.HTML(TITLE)
|
110 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
111 |
|
112 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
113 |
+
with gr.TabItem("MIMIC CDM", elem_id="llm-benchmark-tab-table", id=0):
|
114 |
leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)
|
115 |
|
116 |
+
with gr.TabItem("MIMIC CDM FI", elem_id="llm-benchmark-tab-table", id=1):
|
117 |
leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)
|
118 |
|
119 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
120 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
121 |
|
122 |
with gr.Row():
|
|
|
129 |
show_copy_button=True,
|
130 |
)
|
131 |
|
|
|
132 |
scheduler = BackgroundScheduler()
|
133 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
134 |
scheduler.start()
|
135 |
+
demo.queue(default_concurrency_limit=40).launch(share=True)
|
|
|
|
src/populate.py
CHANGED
@@ -19,28 +19,11 @@ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> p
|
|
19 |
|
20 |
try:
|
21 |
df = pd.DataFrame.from_records(all_data_json)
|
22 |
-
|
23 |
-
# Ensure all required columns exist with proper types
|
24 |
for col in cols:
|
25 |
if col not in df.columns:
|
26 |
df[col] = None
|
27 |
|
28 |
-
# Convert numeric columns
|
29 |
-
numeric_cols = ["average", "params"] + [t.value.col_name for t in Tasks]
|
30 |
-
for col in numeric_cols:
|
31 |
-
if col in df.columns:
|
32 |
-
df[col] = pd.to_numeric(df[col], errors="coerce")
|
33 |
-
|
34 |
-
# Convert boolean columns
|
35 |
-
if "still_on_hub" in df.columns:
|
36 |
-
df["still_on_hub"] = df["still_on_hub"].astype(bool)
|
37 |
-
|
38 |
-
# Convert string columns
|
39 |
-
string_cols = ["model", "architecture"]
|
40 |
-
for col in string_cols:
|
41 |
-
if col in df.columns:
|
42 |
-
df[col] = df[col].astype(str)
|
43 |
-
|
44 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
45 |
df = df[cols].round(decimals=2)
|
46 |
|
|
|
19 |
|
20 |
try:
|
21 |
df = pd.DataFrame.from_records(all_data_json)
|
22 |
+
# Ensure all required columns exist
|
|
|
23 |
for col in cols:
|
24 |
if col not in df.columns:
|
25 |
df[col] = None
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
28 |
df = df[cols].round(decimals=2)
|
29 |
|