|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a |
|
corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders. UniPC is |
|
by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can |
|
also be applied to both noise prediction model and data prediction model. The corrector UniC can be also applied |
|
after any off-the-shelf solvers to increase the order of accuracy. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2302.04867 |
|
|
|
Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We recommend |
|
to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. |
|
|
|
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space |
|
diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the dynamic thresholding. Note |
|
that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
solver_order (`int`, default `2`): |
|
the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of |
|
accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided sampling, |
|
and `solver_order=3` for unconditional sampling. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
thresholding (`bool`, default `False`): |
|
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). |
|
For pixel-space diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the |
|
dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models |
|
(such as stable-diffusion). |
|
dynamic_thresholding_ratio (`float`, default `0.995`): |
|
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen |
|
(https://arxiv.org/abs/2205.11487). |
|
sample_max_value (`float`, default `1.0`): |
|
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. |
|
predict_x0 (`bool`, default `True`): |
|
whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details |
|
solver_type (`str`, default `bh2`): |
|
the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use `bh2` |
|
otherwise. |
|
lower_order_final (`bool`, default `True`): |
|
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically |
|
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. |
|
disable_corrector (`list`, default `[]`): |
|
decide which step to disable the corrector. For large guidance scale, the misalignment between the |
|
`epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be mitigated |
|
by disable the corrector at the first few steps (e.g., disable_corrector=[0]) |
|
solver_p (`SchedulerMixin`, default `None`): |
|
can be any other scheduler. If specified, the algorithm will become solver_p + UniC. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
solver_order: int = 2, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
predict_x0: bool = True, |
|
solver_type: str = "bh2", |
|
lower_order_final: bool = True, |
|
disable_corrector: List[int] = [], |
|
solver_p: SchedulerMixin = None, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
self.alpha_t = torch.sqrt(self.alphas_cumprod) |
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) |
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
if solver_type not in ["bh1", "bh2"]: |
|
if solver_type in ["midpoint", "heun", "logrho"]: |
|
solver_type = "bh1" |
|
else: |
|
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") |
|
|
|
self.predict_x0 = predict_x0 |
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.model_outputs = [None] * solver_order |
|
self.timestep_list = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
self.disable_corrector = disable_corrector |
|
self.solver_p = solver_p |
|
self.last_sample = None |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
timesteps = ( |
|
np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1) |
|
.round()[::-1][:-1] |
|
.copy() |
|
.astype(np.int64) |
|
) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
self.last_sample = None |
|
if self.solver_p: |
|
self.solver_p.set_timesteps(num_inference_steps, device=device) |
|
|
|
def convert_model_output( |
|
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor |
|
) -> torch.FloatTensor: |
|
r""" |
|
Convert the model output to the corresponding type that the algorithm PC needs. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the converted model output. |
|
""" |
|
if self.predict_x0: |
|
if self.config.prediction_type == "epsilon": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = (sample - sigma_t * model_output) / alpha_t |
|
elif self.config.prediction_type == "sample": |
|
x0_pred = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = alpha_t * sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the UniPCMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
|
|
orig_dtype = x0_pred.dtype |
|
if orig_dtype not in [torch.float, torch.double]: |
|
x0_pred = x0_pred.float() |
|
dynamic_max_val = torch.quantile( |
|
torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1 |
|
) |
|
dynamic_max_val = torch.maximum( |
|
dynamic_max_val, |
|
self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device), |
|
)[(...,) + (None,) * (x0_pred.ndim - 1)] |
|
x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val |
|
x0_pred = x0_pred.type(orig_dtype) |
|
return x0_pred |
|
else: |
|
if self.config.prediction_type == "epsilon": |
|
return model_output |
|
elif self.config.prediction_type == "sample": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
epsilon = (sample - alpha_t * model_output) / sigma_t |
|
return epsilon |
|
elif self.config.prediction_type == "v_prediction": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
epsilon = alpha_t * model_output + sigma_t * sample |
|
return epsilon |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the UniPCMultistepScheduler." |
|
) |
|
|
|
def multistep_uni_p_bh_update( |
|
self, |
|
model_output: torch.FloatTensor, |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
order: int, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
direct outputs from learned diffusion model at the current timestep. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
order (`int`): the order of UniP at this step, also the p in UniPC-p. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
timestep_list = self.timestep_list |
|
model_output_list = self.model_outputs |
|
|
|
s0, t = self.timestep_list[-1], prev_timestep |
|
m0 = model_output_list[-1] |
|
x = sample |
|
|
|
if self.solver_p: |
|
x_t = self.solver_p.step(model_output, s0, x).prev_sample |
|
return x_t |
|
|
|
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] |
|
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] |
|
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] |
|
|
|
h = lambda_t - lambda_s0 |
|
device = sample.device |
|
|
|
rks = [] |
|
D1s = [] |
|
for i in range(1, order): |
|
si = timestep_list[-(i + 1)] |
|
mi = model_output_list[-(i + 1)] |
|
lambda_si = self.lambda_t[si] |
|
rk = (lambda_si - lambda_s0) / h |
|
rks.append(rk) |
|
D1s.append((mi - m0) / rk) |
|
|
|
rks.append(1.0) |
|
rks = torch.tensor(rks, device=device) |
|
|
|
R = [] |
|
b = [] |
|
|
|
hh = -h if self.predict_x0 else h |
|
h_phi_1 = torch.expm1(hh) |
|
h_phi_k = h_phi_1 / hh - 1 |
|
|
|
factorial_i = 1 |
|
|
|
if self.config.solver_type == "bh1": |
|
B_h = hh |
|
elif self.config.solver_type == "bh2": |
|
B_h = torch.expm1(hh) |
|
else: |
|
raise NotImplementedError() |
|
|
|
for i in range(1, order + 1): |
|
R.append(torch.pow(rks, i - 1)) |
|
b.append(h_phi_k * factorial_i / B_h) |
|
factorial_i *= i + 1 |
|
h_phi_k = h_phi_k / hh - 1 / factorial_i |
|
|
|
R = torch.stack(R) |
|
b = torch.tensor(b, device=device) |
|
|
|
if len(D1s) > 0: |
|
D1s = torch.stack(D1s, dim=1) |
|
|
|
if order == 2: |
|
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) |
|
else: |
|
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) |
|
else: |
|
D1s = None |
|
|
|
if self.predict_x0: |
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) |
|
else: |
|
pred_res = 0 |
|
x_t = x_t_ - alpha_t * B_h * pred_res |
|
else: |
|
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) |
|
else: |
|
pred_res = 0 |
|
x_t = x_t_ - sigma_t * B_h * pred_res |
|
|
|
x_t = x_t.to(x.dtype) |
|
return x_t |
|
|
|
def multistep_uni_c_bh_update( |
|
self, |
|
this_model_output: torch.FloatTensor, |
|
this_timestep: int, |
|
last_sample: torch.FloatTensor, |
|
this_sample: torch.FloatTensor, |
|
order: int, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the UniC (B(h) version). |
|
|
|
Args: |
|
this_model_output (`torch.FloatTensor`): the model outputs at `x_t` |
|
this_timestep (`int`): the current timestep `t` |
|
last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}` |
|
this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}` |
|
order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy |
|
should be order + 1 |
|
|
|
Returns: |
|
`torch.FloatTensor`: the corrected sample tensor at the current timestep. |
|
""" |
|
timestep_list = self.timestep_list |
|
model_output_list = self.model_outputs |
|
|
|
s0, t = timestep_list[-1], this_timestep |
|
m0 = model_output_list[-1] |
|
x = last_sample |
|
x_t = this_sample |
|
model_t = this_model_output |
|
|
|
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] |
|
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] |
|
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] |
|
|
|
h = lambda_t - lambda_s0 |
|
device = this_sample.device |
|
|
|
rks = [] |
|
D1s = [] |
|
for i in range(1, order): |
|
si = timestep_list[-(i + 1)] |
|
mi = model_output_list[-(i + 1)] |
|
lambda_si = self.lambda_t[si] |
|
rk = (lambda_si - lambda_s0) / h |
|
rks.append(rk) |
|
D1s.append((mi - m0) / rk) |
|
|
|
rks.append(1.0) |
|
rks = torch.tensor(rks, device=device) |
|
|
|
R = [] |
|
b = [] |
|
|
|
hh = -h if self.predict_x0 else h |
|
h_phi_1 = torch.expm1(hh) |
|
h_phi_k = h_phi_1 / hh - 1 |
|
|
|
factorial_i = 1 |
|
|
|
if self.config.solver_type == "bh1": |
|
B_h = hh |
|
elif self.config.solver_type == "bh2": |
|
B_h = torch.expm1(hh) |
|
else: |
|
raise NotImplementedError() |
|
|
|
for i in range(1, order + 1): |
|
R.append(torch.pow(rks, i - 1)) |
|
b.append(h_phi_k * factorial_i / B_h) |
|
factorial_i *= i + 1 |
|
h_phi_k = h_phi_k / hh - 1 / factorial_i |
|
|
|
R = torch.stack(R) |
|
b = torch.tensor(b, device=device) |
|
|
|
if len(D1s) > 0: |
|
D1s = torch.stack(D1s, dim=1) |
|
else: |
|
D1s = None |
|
|
|
|
|
if order == 1: |
|
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) |
|
else: |
|
rhos_c = torch.linalg.solve(R, b) |
|
|
|
if self.predict_x0: |
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) |
|
else: |
|
corr_res = 0 |
|
D1_t = model_t - m0 |
|
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) |
|
else: |
|
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) |
|
else: |
|
corr_res = 0 |
|
D1_t = model_t - m0 |
|
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) |
|
x_t = x_t.to(x.dtype) |
|
return x_t |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Step function propagating the sample with the multistep UniPC. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
step_index = (self.timesteps == timestep).nonzero() |
|
if len(step_index) == 0: |
|
step_index = len(self.timesteps) - 1 |
|
else: |
|
step_index = step_index.item() |
|
|
|
use_corrector = ( |
|
step_index > 0 and step_index - 1 not in self.disable_corrector and self.last_sample is not None |
|
) |
|
|
|
model_output_convert = self.convert_model_output(model_output, timestep, sample) |
|
if use_corrector: |
|
sample = self.multistep_uni_c_bh_update( |
|
this_model_output=model_output_convert, |
|
this_timestep=timestep, |
|
last_sample=self.last_sample, |
|
this_sample=sample, |
|
order=self.this_order, |
|
) |
|
|
|
|
|
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] |
|
|
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.timestep_list[i] = self.timestep_list[i + 1] |
|
|
|
self.model_outputs[-1] = model_output_convert |
|
self.timestep_list[-1] = timestep |
|
|
|
if self.config.lower_order_final: |
|
this_order = min(self.config.solver_order, len(self.timesteps) - step_index) |
|
else: |
|
this_order = self.config.solver_order |
|
|
|
self.this_order = min(this_order, self.lower_order_nums + 1) |
|
assert self.this_order > 0 |
|
|
|
self.last_sample = sample |
|
prev_sample = self.multistep_uni_p_bh_update( |
|
model_output=model_output, |
|
prev_timestep=prev_timestep, |
|
sample=sample, |
|
order=self.this_order, |
|
) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|