ML-Image / diffusers /schedulers /scheduling_unipc_multistep.py
ML-INTA's picture
Upload 358 files
7f43c1b
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
"""
UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a
corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders. UniPC is
by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can
also be applied to both noise prediction model and data prediction model. The corrector UniC can be also applied
after any off-the-shelf solvers to increase the order of accuracy.
For more details, see the original paper: https://arxiv.org/abs/2302.04867
Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We recommend
to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the dynamic thresholding. Note
that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion).
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
solver_order (`int`, default `2`):
the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of
accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided sampling,
and `solver_order=3` for unconditional sampling.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
For pixel-space diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the
dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models
(such as stable-diffusion).
dynamic_thresholding_ratio (`float`, default `0.995`):
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
(https://arxiv.org/abs/2205.11487).
sample_max_value (`float`, default `1.0`):
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
predict_x0 (`bool`, default `True`):
whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details
solver_type (`str`, default `bh2`):
the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use `bh2`
otherwise.
lower_order_final (`bool`, default `True`):
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
disable_corrector (`list`, default `[]`):
decide which step to disable the corrector. For large guidance scale, the misalignment between the
`epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be mitigated
by disable the corrector at the first few steps (e.g., disable_corrector=[0])
solver_p (`SchedulerMixin`, default `None`):
can be any other scheduler. If specified, the algorithm will become solver_p + UniC.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
predict_x0: bool = True,
solver_type: str = "bh2",
lower_order_final: bool = True,
disable_corrector: List[int] = [],
solver_p: SchedulerMixin = None,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
if solver_type not in ["bh1", "bh2"]:
if solver_type in ["midpoint", "heun", "logrho"]:
solver_type = "bh1"
else:
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
self.predict_x0 = predict_x0
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps)
self.model_outputs = [None] * solver_order
self.timestep_list = [None] * solver_order
self.lower_order_nums = 0
self.disable_corrector = disable_corrector
self.solver_p = solver_p
self.last_sample = None
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
timesteps = (
np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
.round()[::-1][:-1]
.copy()
.astype(np.int64)
)
self.timesteps = torch.from_numpy(timesteps).to(device)
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
self.last_sample = None
if self.solver_p:
self.solver_p.set_timesteps(num_inference_steps, device=device)
def convert_model_output(
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor
) -> torch.FloatTensor:
r"""
Convert the model output to the corresponding type that the algorithm PC needs.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
Returns:
`torch.FloatTensor`: the converted model output.
"""
if self.predict_x0:
if self.config.prediction_type == "epsilon":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the UniPCMultistepScheduler."
)
if self.config.thresholding:
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
orig_dtype = x0_pred.dtype
if orig_dtype not in [torch.float, torch.double]:
x0_pred = x0_pred.float()
dynamic_max_val = torch.quantile(
torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1
)
dynamic_max_val = torch.maximum(
dynamic_max_val,
self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device),
)[(...,) + (None,) * (x0_pred.ndim - 1)]
x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
x0_pred = x0_pred.type(orig_dtype)
return x0_pred
else:
if self.config.prediction_type == "epsilon":
return model_output
elif self.config.prediction_type == "sample":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
return epsilon
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = alpha_t * model_output + sigma_t * sample
return epsilon
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the UniPCMultistepScheduler."
)
def multistep_uni_p_bh_update(
self,
model_output: torch.FloatTensor,
prev_timestep: int,
sample: torch.FloatTensor,
order: int,
) -> torch.FloatTensor:
"""
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
Args:
model_output (`torch.FloatTensor`):
direct outputs from learned diffusion model at the current timestep.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
order (`int`): the order of UniP at this step, also the p in UniPC-p.
Returns:
`torch.FloatTensor`: the sample tensor at the previous timestep.
"""
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = self.timestep_list[-1], prev_timestep
m0 = model_output_list[-1]
x = sample
if self.solver_p:
x_t = self.solver_p.step(model_output, s0, x).prev_sample
return x_t
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
device = sample.device
rks = []
D1s = []
for i in range(1, order):
si = timestep_list[-(i + 1)]
mi = model_output_list[-(i + 1)]
lambda_si = self.lambda_t[si]
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk)
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if self.predict_x0:
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
if D1s is not None:
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - alpha_t * B_h * pred_res
else:
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
if D1s is not None:
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - sigma_t * B_h * pred_res
x_t = x_t.to(x.dtype)
return x_t
def multistep_uni_c_bh_update(
self,
this_model_output: torch.FloatTensor,
this_timestep: int,
last_sample: torch.FloatTensor,
this_sample: torch.FloatTensor,
order: int,
) -> torch.FloatTensor:
"""
One step for the UniC (B(h) version).
Args:
this_model_output (`torch.FloatTensor`): the model outputs at `x_t`
this_timestep (`int`): the current timestep `t`
last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}`
this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}`
order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy
should be order + 1
Returns:
`torch.FloatTensor`: the corrected sample tensor at the current timestep.
"""
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = timestep_list[-1], this_timestep
m0 = model_output_list[-1]
x = last_sample
x_t = this_sample
model_t = this_model_output
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
device = this_sample.device
rks = []
D1s = []
for i in range(1, order):
si = timestep_list[-(i + 1)]
mi = model_output_list[-(i + 1)]
lambda_si = self.lambda_t[si]
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk)
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1)
else:
D1s = None
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_c = torch.linalg.solve(R, b)
if self.predict_x0:
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
if D1s is not None:
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
else:
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
if D1s is not None:
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
x_t = x_t.to(x.dtype)
return x_t
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Step function propagating the sample with the multistep UniPC.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
step_index = (self.timesteps == timestep).nonzero()
if len(step_index) == 0:
step_index = len(self.timesteps) - 1
else:
step_index = step_index.item()
use_corrector = (
step_index > 0 and step_index - 1 not in self.disable_corrector and self.last_sample is not None
)
model_output_convert = self.convert_model_output(model_output, timestep, sample)
if use_corrector:
sample = self.multistep_uni_c_bh_update(
this_model_output=model_output_convert,
this_timestep=timestep,
last_sample=self.last_sample,
this_sample=sample,
order=self.this_order,
)
# now prepare to run the predictor
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.timestep_list[i] = self.timestep_list[i + 1]
self.model_outputs[-1] = model_output_convert
self.timestep_list[-1] = timestep
if self.config.lower_order_final:
this_order = min(self.config.solver_order, len(self.timesteps) - step_index)
else:
this_order = self.config.solver_order
self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep
assert self.this_order > 0
self.last_sample = sample
prev_sample = self.multistep_uni_p_bh_update(
model_output=model_output, # pass the original non-converted model output, in case solver-p is used
prev_timestep=prev_timestep,
sample=sample,
order=self.this_order,
)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps