mlbench123 commited on
Commit
4323222
·
verified ·
1 Parent(s): 95c3808

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +409 -416
app.py CHANGED
@@ -1,416 +1,409 @@
1
- import os
2
- from pathlib import Path
3
- from typing import List, Union
4
- from PIL import Image
5
- import ezdxf.units
6
- import numpy as np
7
- import torch
8
- from torchvision import transforms
9
- from ultralytics import YOLOWorld, YOLO
10
- from ultralytics.engine.results import Results
11
- from ultralytics.utils.plotting import save_one_box
12
- from transformers import AutoModelForImageSegmentation
13
- import cv2
14
- import ezdxf
15
- import gradio as gr
16
- import gc
17
- from scalingtestupdated import calculate_scaling_factor
18
- from scipy.interpolate import splprep, splev
19
- from scipy.ndimage import gaussian_filter1d
20
- import json
21
-
22
-
23
- birefnet = AutoModelForImageSegmentation.from_pretrained(
24
- "zhengpeng7/BiRefNet", trust_remote_code=True
25
- )
26
-
27
- device = "cpu"
28
- torch.set_float32_matmul_precision(["high", "highest"][0])
29
-
30
- birefnet.to(device)
31
- birefnet.eval()
32
- transform_image = transforms.Compose(
33
- [
34
- transforms.Resize((1024, 1024)),
35
- transforms.ToTensor(),
36
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
37
- ]
38
- )
39
-
40
- def remove_bg(image: np.ndarray) -> np.ndarray:
41
-
42
- image = Image.fromarray(image)
43
- input_images = transform_image(image).unsqueeze(0).to("cpu")
44
-
45
- # Prediction
46
- with torch.no_grad():
47
- preds = birefnet(input_images)[-1].sigmoid().cpu()
48
- pred = preds[0].squeeze()
49
-
50
- # Show Results
51
- pred_pil: Image = transforms.ToPILImage()(pred)
52
- print(pred_pil)
53
- # Scale proportionally with max length to 1024 for faster showing
54
- scale_ratio = 1024 / max(image.size)
55
- scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
56
- print(f"scaled size {scaled_size}")
57
-
58
- return np.array(pred_pil.resize(scaled_size))
59
-
60
- def make_square(img: np.ndarray):
61
- # Get dimensions
62
- height, width = img.shape[:2]
63
-
64
- # Find the larger dimension
65
- max_dim = max(height, width)
66
-
67
- # Calculate padding
68
- pad_height = (max_dim - height) // 2
69
- pad_width = (max_dim - width) // 2
70
-
71
- # Handle odd dimensions
72
- pad_height_extra = max_dim - height - 2 * pad_height
73
- pad_width_extra = max_dim - width - 2 * pad_width
74
-
75
- # Create padding with edge colors
76
- if len(img.shape) == 3: # Color image
77
- # Pad the image
78
- padded = np.pad(
79
- img,
80
- (
81
- (pad_height, pad_height + pad_height_extra),
82
- (pad_width, pad_width + pad_width_extra),
83
- (0, 0),
84
- ),
85
- mode="edge",
86
- )
87
- else: # Grayscale image
88
- padded = np.pad(
89
- img,
90
- (
91
- (pad_height, pad_height + pad_height_extra),
92
- (pad_width, pad_width + pad_width_extra),
93
- ),
94
- mode="edge",
95
- )
96
-
97
- return padded
98
-
99
- def exclude_scaling_box(
100
- image: np.ndarray,
101
- bbox: np.ndarray,
102
- orig_size: tuple,
103
- processed_size: tuple,
104
- expansion_factor: float = 1.5,
105
- ) -> np.ndarray:
106
- # Unpack the bounding box
107
- x_min, y_min, x_max, y_max = map(int, bbox)
108
-
109
- # Calculate scaling factors
110
- scale_x = processed_size[1] / orig_size[1] # Width scale
111
- scale_y = processed_size[0] / orig_size[0] # Height scale
112
-
113
- # Adjust bounding box coordinates
114
- x_min = int(x_min * scale_x)
115
- x_max = int(x_max * scale_x)
116
- y_min = int(y_min * scale_y)
117
- y_max = int(y_max * scale_y)
118
-
119
- # Calculate expanded box coordinates
120
- box_width = x_max - x_min
121
- box_height = y_max - y_min
122
- expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
123
- expanded_x_max = min(
124
- image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
125
- )
126
- expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
127
- expanded_y_max = min(
128
- image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
129
- )
130
-
131
- # Black out the expanded region
132
- image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
133
-
134
- return image
135
-
136
- def resample_contour(contour):
137
- # Get all the parameters at the start:
138
- num_points = 1000
139
- smoothing_factor = 5
140
- spline_degree = 3 # Typically k=3 for cubic spline
141
-
142
- smoothed_x_sigma = 1
143
- smoothed_y_sigma = 1
144
-
145
- # Ensure contour has enough points
146
- if len(contour) < spline_degree + 1:
147
- raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
148
-
149
- contour = contour[:, 0, :]
150
-
151
- tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
152
- u = np.linspace(0, 1, num_points)
153
- resampled_points = splev(u, tck)
154
-
155
- smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
156
- smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
157
-
158
- return np.array([smoothed_x, smoothed_y]).T
159
-
160
-
161
-
162
- def save_dxf_spline(inflated_contours, scaling_factor, height):
163
- degree = 3
164
- closed = True
165
-
166
- # Create a new DXF document with millimeters as the unit
167
- doc = ezdxf.new(units=ezdxf.units.MM)
168
- doc.units = ezdxf.units.MM # Ensure units are millimeters
169
- doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters
170
-
171
- msp = doc.modelspace()
172
-
173
- for contour in inflated_contours:
174
- try:
175
- resampled_contour = resample_contour(contour)
176
- points = [
177
- (x * scaling_factor, (height - y) * scaling_factor)
178
- for x, y in resampled_contour
179
- ]
180
- if len(points) >= 3:
181
- if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
182
- points.append(points[0])
183
-
184
- spline = msp.add_spline(points, degree=degree)
185
- spline.closed = closed
186
-
187
- except ValueError as e:
188
- print(f"Skipping contour: {e}")
189
-
190
- dxf_filepath = os.path.join("./outputs", "out.dxf")
191
- doc.saveas(dxf_filepath)
192
-
193
- return dxf_filepath
194
-
195
-
196
- def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
197
- """
198
- Extracts and draws the outlines of masks from a binary image.
199
- Args:
200
- binary_image: Grayscale binary image where white represents masks and black is the background.
201
- Returns:
202
- Image with outlines drawn.
203
- """
204
- # Detect contours from the binary image
205
- contours, _ = cv2.findContours(
206
- binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
207
- )
208
-
209
- outline_image = np.zeros_like(binary_image)
210
-
211
- # Draw the contours on the blank image
212
- cv2.drawContours(
213
- outline_image, contours, -1, (255), thickness=1
214
- ) # White color for outlines
215
-
216
- return cv2.bitwise_not(outline_image), contours
217
-
218
- def to_dxf(contours):
219
- # Create a new DXF document with millimeters as the unit
220
- doc = ezdxf.new(units=ezdxf.units.MM)
221
- doc.units = ezdxf.units.MM # Ensure units are millimeters
222
- doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters)
223
- msp = doc.modelspace()
224
-
225
- try:
226
- for contour in contours:
227
- points = [(point[0][0], point[0][1]) for point in contour]
228
- msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
229
- except Exception as e:
230
- raise gr.Error(f"Unable to generate DXF: {e}")
231
-
232
- output_path = "./outputs/out2.dxf"
233
- doc.saveas(output_path)
234
- return output_path
235
-
236
- def smooth_contours(contour):
237
- epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
238
- return cv2.approxPolyDP(contour, epsilon, True)
239
-
240
-
241
- def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
242
- """
243
- Resize image by scaling both width and height by the same factor.
244
- Args:
245
- image: Input numpy image
246
- scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
247
- Returns:
248
- np.ndarray: Resized image
249
- """
250
- if scale_factor <= 0:
251
- raise ValueError("Scale factor must be positive")
252
-
253
- current_height, current_width = image.shape[:2]
254
-
255
- # Calculate new dimensions
256
- new_width = int(current_width * scale_factor)
257
- new_height = int(current_height * scale_factor)
258
-
259
- # Choose interpolation method based on whether we're scaling up or down
260
- interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
261
-
262
- # Resize image
263
- resized_image = cv2.resize(
264
- image, (new_width, new_height), interpolation=interpolation
265
- )
266
-
267
- return resized_image
268
-
269
- def detect_reference_square(img) -> np.ndarray:
270
- box_detector = YOLO("./best1.pt")
271
- res = box_detector.predict(img, conf=0.05)
272
- del box_detector
273
- return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
274
- 0
275
- ].cpu().boxes.xyxy[0]
276
-
277
-
278
- def resize_img(img: np.ndarray, resize_dim):
279
- return np.array(Image.fromarray(img).resize(resize_dim))
280
-
281
-
282
- # Load selected language file
283
- def load_language(lang_code):
284
- with open(f'./locales/{lang_code}.json', 'r') as f:
285
- return json.load(f)
286
-
287
- def predict(image, offset, coin_size_mm):
288
- # Load the selected language
289
- # translations = load_language(language)
290
-
291
- if offset <= -1:
292
- raise gr.Error("Offset Value Can't be too SMALL for OBJECT's Mask Dilation")
293
-
294
- try:
295
- reference_obj_img, scaling_box_coords = detect_reference_square(image)
296
- except:
297
- raise gr.Error("Unable to detect the COIN. Please try again with different magnification.")
298
-
299
- reference_obj_img = make_square(reference_obj_img)
300
-
301
- reference_square_mask = remove_bg(reference_obj_img)
302
-
303
- reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0]))
304
-
305
- try:
306
- scaling_factor= calculate_scaling_factor(
307
- reference_image_path="./coin.jpg",
308
- target_image=reference_square_mask,
309
- reference_obj_size_mm = coin_size_mm,
310
- feature_detector="ORB",
311
- )
312
- except Exception as e:
313
- scaling_factor = None
314
- print(f"Error calculating scaling factor: {e}")
315
-
316
- # Default to a scaling factor if calculation fails
317
- if scaling_factor is None or scaling_factor == 0:
318
- scaling_factor = 0.07
319
- print("Using default scaling factor due to calculation error")
320
-
321
- orig_size = image.shape[:2]
322
- objects_mask = remove_bg(image)
323
- processed_size = objects_mask.shape[:2]
324
-
325
- objects_mask = exclude_scaling_box(
326
- objects_mask,
327
- scaling_box_coords,
328
- orig_size,
329
- processed_size,
330
- expansion_factor=1.2,
331
- )
332
- objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
333
-
334
- # Ensure offset_inches is valid
335
- if scaling_factor != 0:
336
- offset_pixels = (float(offset) / float(scaling_factor)) * 2 + 1
337
- else:
338
- offset_pixels = 1 # Default value in case of invalid scaling factor
339
-
340
- dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
341
-
342
- Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
343
- outlines, contours = extract_outlines(dilated_mask)
344
- shrunked_img_contours = cv2.drawContours(image, contours, -1, (0, 0, 255), thickness=2)
345
- dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
346
-
347
- return (
348
- shrunked_img_contours,
349
- outlines,
350
- dxf,
351
- dilated_mask,
352
- scaling_factor,
353
- )
354
-
355
- if __name__ == "__main__":
356
- os.makedirs("./outputs", exist_ok=True)
357
-
358
- # Language selector in UI
359
- ifer = gr.Interface(
360
- fn=predict,
361
- inputs=[
362
- gr.Image(label="Input Image", type="numpy"),
363
- gr.Number(label="Offset value for Mask(mm)", value=0.15),
364
- gr.Number(label="Diameter of reference coin(mm). Adjust according to coin.", value=22),
365
- # gr.Dropdown(["en", "nl"], label="Language", value="en") # Default English
366
- ],
367
- outputs=[
368
- gr.Image(label="Output Image"),
369
- gr.Image(label="Outlines of Objects"),
370
- gr.File(label="DXF file"),
371
- gr.Image(label="Mask"),
372
- gr.Textbox(
373
- label="Scaling Factor(mm)",
374
- placeholder="Every pixel is equal to mentioned number in millimeters",
375
- ),
376
- ],
377
- examples=[
378
- ["./examples/Test20.jpg", 0.15],
379
- ["./examples/Test21.jpg", 0.15],
380
- ["./examples/Test22.jpg", 0.15],
381
- ["./examples/Test23.jpg", 0.15],
382
- ],
383
- )
384
- ifer.launch(share=True)
385
-
386
-
387
- # if __name__ == "__main__":
388
- # os.makedirs("./outputs", exist_ok=True)
389
-
390
- # ifer = gr.Interface(
391
- # fn=predict,
392
- # inputs=[
393
- # gr.Image(label="Input Image"),
394
- # gr.Number(label="Offset value for Mask(mm)", value=2),
395
- # ],
396
- # outputs=[
397
- # gr.Image(label="Ouput Image"),
398
- # gr.Image(label="Outlines of Objects"),
399
- # gr.File(label="DXF file"),
400
- # gr.Image(label="Mask"),
401
- # gr.Textbox(
402
- # label="Scaling Factor(mm)",
403
- # placeholder="Every pixel is equal to mentioned number in millimeters",
404
- # ),
405
- # ],
406
- # examples=[
407
- # ["./examples/Test20.jpg", 2],
408
- # ["./examples/Test21.jpg", 2],
409
- # ["./examples/Test22.jpg", 2],
410
- # ["./examples/Test23.jpg", 2],
411
- # ],
412
- # )
413
- # ifer.launch(share=True)
414
-
415
-
416
-
 
1
+ import os
2
+ from pathlib import Path
3
+ from typing import List, Union
4
+ from PIL import Image
5
+ import ezdxf.units
6
+ import numpy as np
7
+ import torch
8
+ from torchvision import transforms
9
+ from ultralytics import YOLOWorld, YOLO
10
+ from ultralytics.engine.results import Results
11
+ from ultralytics.utils.plotting import save_one_box
12
+ from transformers import AutoModelForImageSegmentation
13
+ import cv2
14
+ import ezdxf
15
+ import gradio as gr
16
+ import gc
17
+ from scalingtestupdated import calculate_scaling_factor
18
+ from scipy.interpolate import splprep, splev
19
+ from scipy.ndimage import gaussian_filter1d
20
+ import json
21
+
22
+
23
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
24
+ "zhengpeng7/BiRefNet", trust_remote_code=True
25
+ )
26
+
27
+ device = "cpu"
28
+ torch.set_float32_matmul_precision(["high", "highest"][0])
29
+
30
+ birefnet.to(device)
31
+ birefnet.eval()
32
+ transform_image = transforms.Compose(
33
+ [
34
+ transforms.Resize((1024, 1024)),
35
+ transforms.ToTensor(),
36
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
37
+ ]
38
+ )
39
+
40
+ def remove_bg(image: np.ndarray) -> np.ndarray:
41
+
42
+ image = Image.fromarray(image)
43
+ input_images = transform_image(image).unsqueeze(0).to("cpu")
44
+
45
+ # Prediction
46
+ with torch.no_grad():
47
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
48
+ pred = preds[0].squeeze()
49
+
50
+ # Show Results
51
+ pred_pil: Image = transforms.ToPILImage()(pred)
52
+ print(pred_pil)
53
+ # Scale proportionally with max length to 1024 for faster showing
54
+ scale_ratio = 1024 / max(image.size)
55
+ scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
56
+ print(f"scaled size {scaled_size}")
57
+
58
+ return np.array(pred_pil.resize(scaled_size))
59
+
60
+ def make_square(img: np.ndarray):
61
+ # Get dimensions
62
+ height, width = img.shape[:2]
63
+
64
+ # Find the larger dimension
65
+ max_dim = max(height, width)
66
+
67
+ # Calculate padding
68
+ pad_height = (max_dim - height) // 2
69
+ pad_width = (max_dim - width) // 2
70
+
71
+ # Handle odd dimensions
72
+ pad_height_extra = max_dim - height - 2 * pad_height
73
+ pad_width_extra = max_dim - width - 2 * pad_width
74
+
75
+ # Create padding with edge colors
76
+ if len(img.shape) == 3: # Color image
77
+ # Pad the image
78
+ padded = np.pad(
79
+ img,
80
+ (
81
+ (pad_height, pad_height + pad_height_extra),
82
+ (pad_width, pad_width + pad_width_extra),
83
+ (0, 0),
84
+ ),
85
+ mode="edge",
86
+ )
87
+ else: # Grayscale image
88
+ padded = np.pad(
89
+ img,
90
+ (
91
+ (pad_height, pad_height + pad_height_extra),
92
+ (pad_width, pad_width + pad_width_extra),
93
+ ),
94
+ mode="edge",
95
+ )
96
+
97
+ return padded
98
+
99
+ def exclude_scaling_box(
100
+ image: np.ndarray,
101
+ bbox: np.ndarray,
102
+ orig_size: tuple,
103
+ processed_size: tuple,
104
+ expansion_factor: float = 1.5,
105
+ ) -> np.ndarray:
106
+ # Unpack the bounding box
107
+ x_min, y_min, x_max, y_max = map(int, bbox)
108
+
109
+ # Calculate scaling factors
110
+ scale_x = processed_size[1] / orig_size[1] # Width scale
111
+ scale_y = processed_size[0] / orig_size[0] # Height scale
112
+
113
+ # Adjust bounding box coordinates
114
+ x_min = int(x_min * scale_x)
115
+ x_max = int(x_max * scale_x)
116
+ y_min = int(y_min * scale_y)
117
+ y_max = int(y_max * scale_y)
118
+
119
+ # Calculate expanded box coordinates
120
+ box_width = x_max - x_min
121
+ box_height = y_max - y_min
122
+ expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
123
+ expanded_x_max = min(
124
+ image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
125
+ )
126
+ expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
127
+ expanded_y_max = min(
128
+ image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
129
+ )
130
+
131
+ # Black out the expanded region
132
+ image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
133
+
134
+ return image
135
+
136
+ def resample_contour(contour):
137
+ # Get all the parameters at the start:
138
+ num_points = 1000
139
+ smoothing_factor = 5
140
+ spline_degree = 3 # Typically k=3 for cubic spline
141
+
142
+ smoothed_x_sigma = 1
143
+ smoothed_y_sigma = 1
144
+
145
+ # Ensure contour has enough points
146
+ if len(contour) < spline_degree + 1:
147
+ raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
148
+
149
+ contour = contour[:, 0, :]
150
+
151
+ tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
152
+ u = np.linspace(0, 1, num_points)
153
+ resampled_points = splev(u, tck)
154
+
155
+ smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
156
+ smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
157
+
158
+ return np.array([smoothed_x, smoothed_y]).T
159
+
160
+
161
+
162
+ def save_dxf_spline(inflated_contours, scaling_factor, height):
163
+ degree = 3
164
+ closed = True
165
+
166
+ # Create a new DXF document with millimeters as the unit
167
+ doc = ezdxf.new(units=ezdxf.units.MM)
168
+ doc.units = ezdxf.units.MM # Ensure units are millimeters
169
+ doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters
170
+
171
+ msp = doc.modelspace()
172
+
173
+ for contour in inflated_contours:
174
+ try:
175
+ resampled_contour = resample_contour(contour)
176
+ points = [
177
+ (x * scaling_factor, (height - y) * scaling_factor)
178
+ for x, y in resampled_contour
179
+ ]
180
+ if len(points) >= 3:
181
+ if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
182
+ points.append(points[0])
183
+
184
+ spline = msp.add_spline(points, degree=degree)
185
+ spline.closed = closed
186
+
187
+ except ValueError as e:
188
+ print(f"Skipping contour: {e}")
189
+
190
+ dxf_filepath = os.path.join("./outputs", "out.dxf")
191
+ doc.saveas(dxf_filepath)
192
+
193
+ return dxf_filepath
194
+
195
+
196
+ def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
197
+ """
198
+ Extracts and draws the outlines of masks from a binary image.
199
+ Args:
200
+ binary_image: Grayscale binary image where white represents masks and black is the background.
201
+ Returns:
202
+ Image with outlines drawn.
203
+ """
204
+ # Detect contours from the binary image
205
+ contours, _ = cv2.findContours(
206
+ binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
207
+ )
208
+
209
+ outline_image = np.zeros_like(binary_image)
210
+
211
+ # Draw the contours on the blank image
212
+ cv2.drawContours(
213
+ outline_image, contours, -1, (255), thickness=1
214
+ ) # White color for outlines
215
+
216
+ return cv2.bitwise_not(outline_image), contours
217
+
218
+ def to_dxf(contours):
219
+ # Create a new DXF document with millimeters as the unit
220
+ doc = ezdxf.new(units=ezdxf.units.MM)
221
+ doc.units = ezdxf.units.MM # Ensure units are millimeters
222
+ doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters)
223
+ msp = doc.modelspace()
224
+
225
+ try:
226
+ for contour in contours:
227
+ points = [(point[0][0], point[0][1]) for point in contour]
228
+ msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
229
+ except Exception as e:
230
+ raise gr.Error(f"Unable to generate DXF: {e}")
231
+
232
+ output_path = "./outputs/out2.dxf"
233
+ doc.saveas(output_path)
234
+ return output_path
235
+
236
+ def smooth_contours(contour):
237
+ epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
238
+ return cv2.approxPolyDP(contour, epsilon, True)
239
+
240
+
241
+ def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
242
+ """
243
+ Resize image by scaling both width and height by the same factor.
244
+ Args:
245
+ image: Input numpy image
246
+ scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
247
+ Returns:
248
+ np.ndarray: Resized image
249
+ """
250
+ if scale_factor <= 0:
251
+ raise ValueError("Scale factor must be positive")
252
+
253
+ current_height, current_width = image.shape[:2]
254
+
255
+ # Calculate new dimensions
256
+ new_width = int(current_width * scale_factor)
257
+ new_height = int(current_height * scale_factor)
258
+
259
+ # Choose interpolation method based on whether we're scaling up or down
260
+ interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
261
+
262
+ # Resize image
263
+ resized_image = cv2.resize(
264
+ image, (new_width, new_height), interpolation=interpolation
265
+ )
266
+
267
+ return resized_image
268
+
269
+ def detect_reference_square(img) -> np.ndarray:
270
+ box_detector = YOLO("./best1.pt")
271
+ res = box_detector.predict(img, conf=0.05)
272
+ del box_detector
273
+ return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
274
+ 0
275
+ ].cpu().boxes.xyxy[0]
276
+
277
+
278
+ def resize_img(img: np.ndarray, resize_dim):
279
+ return np.array(Image.fromarray(img).resize(resize_dim))
280
+
281
+
282
+ def predict(image, offset, coin_size_mm):
283
+
284
+ if offset < 0:
285
+ raise gr.Error("Offset Value Can't be negative")
286
+
287
+ try:
288
+ reference_obj_img, scaling_box_coords = detect_reference_square(image)
289
+ except:
290
+ raise gr.Error("Unable to detect the COIN. Please try again with different magnification.")
291
+
292
+ reference_obj_img = make_square(reference_obj_img)
293
+
294
+ reference_square_mask = remove_bg(reference_obj_img)
295
+
296
+ reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0]))
297
+
298
+ try:
299
+ scaling_factor= calculate_scaling_factor(
300
+ reference_image_path="./coin.jpg",
301
+ target_image=reference_square_mask,
302
+ reference_obj_size_mm = coin_size_mm,
303
+ feature_detector="ORB",
304
+ )
305
+ except Exception as e:
306
+ scaling_factor = None
307
+ print(f"Error calculating scaling factor: {e}")
308
+
309
+ # Default to a scaling factor if calculation fails
310
+ if scaling_factor is None or scaling_factor == 0:
311
+ scaling_factor = 0.07
312
+ print("Using default scaling factor due to calculation error")
313
+
314
+ orig_size = image.shape[:2]
315
+ objects_mask = remove_bg(image)
316
+ processed_size = objects_mask.shape[:2]
317
+
318
+ objects_mask = exclude_scaling_box(
319
+ objects_mask,
320
+ scaling_box_coords,
321
+ orig_size,
322
+ processed_size,
323
+ expansion_factor=1.2,
324
+ )
325
+ objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
326
+
327
+ # Ensure offset_inches is valid
328
+ if scaling_factor != 0:
329
+ offset_pixels = (float(offset) / float(scaling_factor)) * 2 + 1
330
+ else:
331
+ offset_pixels = 1 # Default value in case of invalid scaling factor
332
+
333
+ dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
334
+
335
+ Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
336
+ outlines, contours = extract_outlines(dilated_mask)
337
+ shrunked_img_contours = cv2.drawContours(image, contours, -1, (0, 0, 255), thickness=2)
338
+ dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
339
+
340
+ return (
341
+ shrunked_img_contours,
342
+ outlines,
343
+ dxf,
344
+ dilated_mask,
345
+ scaling_factor,
346
+ )
347
+
348
+ if __name__ == "__main__":
349
+ os.makedirs("./outputs", exist_ok=True)
350
+
351
+ # Language selector in UI
352
+ ifer = gr.Interface(
353
+ fn=predict,
354
+ inputs=[
355
+ gr.Image(label="Input Image", type="numpy"),
356
+ gr.Number(label="Offset value for Mask(mm)", value=0.15),
357
+ gr.Number(label="Diameter of reference coin(mm). Adjust according to coin.", value=22),
358
+ # gr.Dropdown(["en", "nl"], label="Language", value="en") # Default English
359
+ ],
360
+ outputs=[
361
+ gr.Image(label="Output Image"),
362
+ gr.Image(label="Outlines of Objects"),
363
+ gr.File(label="DXF file"),
364
+ gr.Image(label="Mask"),
365
+ gr.Textbox(
366
+ label="Scaling Factor(mm)",
367
+ placeholder="Every pixel is equal to mentioned number in millimeters",
368
+ ),
369
+ ],
370
+ examples=[
371
+ ["./examples/Test20.jpg", 0.15],
372
+ ["./examples/Test21.jpg", 0.15],
373
+ ["./examples/Test22.jpg", 0.15],
374
+ ["./examples/Test23.jpg", 0.15],
375
+ ],
376
+ )
377
+ ifer.launch(share=True)
378
+
379
+
380
+ # if __name__ == "__main__":
381
+ # os.makedirs("./outputs", exist_ok=True)
382
+
383
+ # ifer = gr.Interface(
384
+ # fn=predict,
385
+ # inputs=[
386
+ # gr.Image(label="Input Image"),
387
+ # gr.Number(label="Offset value for Mask(mm)", value=2),
388
+ # ],
389
+ # outputs=[
390
+ # gr.Image(label="Ouput Image"),
391
+ # gr.Image(label="Outlines of Objects"),
392
+ # gr.File(label="DXF file"),
393
+ # gr.Image(label="Mask"),
394
+ # gr.Textbox(
395
+ # label="Scaling Factor(mm)",
396
+ # placeholder="Every pixel is equal to mentioned number in millimeters",
397
+ # ),
398
+ # ],
399
+ # examples=[
400
+ # ["./examples/Test20.jpg", 2],
401
+ # ["./examples/Test21.jpg", 2],
402
+ # ["./examples/Test22.jpg", 2],
403
+ # ["./examples/Test23.jpg", 2],
404
+ # ],
405
+ # )
406
+ # ifer.launch(share=True)
407
+
408
+
409
+