mlbench123 commited on
Commit
95c3808
·
verified ·
1 Parent(s): 133081d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +416 -0
app.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pathlib import Path
3
+ from typing import List, Union
4
+ from PIL import Image
5
+ import ezdxf.units
6
+ import numpy as np
7
+ import torch
8
+ from torchvision import transforms
9
+ from ultralytics import YOLOWorld, YOLO
10
+ from ultralytics.engine.results import Results
11
+ from ultralytics.utils.plotting import save_one_box
12
+ from transformers import AutoModelForImageSegmentation
13
+ import cv2
14
+ import ezdxf
15
+ import gradio as gr
16
+ import gc
17
+ from scalingtestupdated import calculate_scaling_factor
18
+ from scipy.interpolate import splprep, splev
19
+ from scipy.ndimage import gaussian_filter1d
20
+ import json
21
+
22
+
23
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
24
+ "zhengpeng7/BiRefNet", trust_remote_code=True
25
+ )
26
+
27
+ device = "cpu"
28
+ torch.set_float32_matmul_precision(["high", "highest"][0])
29
+
30
+ birefnet.to(device)
31
+ birefnet.eval()
32
+ transform_image = transforms.Compose(
33
+ [
34
+ transforms.Resize((1024, 1024)),
35
+ transforms.ToTensor(),
36
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
37
+ ]
38
+ )
39
+
40
+ def remove_bg(image: np.ndarray) -> np.ndarray:
41
+
42
+ image = Image.fromarray(image)
43
+ input_images = transform_image(image).unsqueeze(0).to("cpu")
44
+
45
+ # Prediction
46
+ with torch.no_grad():
47
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
48
+ pred = preds[0].squeeze()
49
+
50
+ # Show Results
51
+ pred_pil: Image = transforms.ToPILImage()(pred)
52
+ print(pred_pil)
53
+ # Scale proportionally with max length to 1024 for faster showing
54
+ scale_ratio = 1024 / max(image.size)
55
+ scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
56
+ print(f"scaled size {scaled_size}")
57
+
58
+ return np.array(pred_pil.resize(scaled_size))
59
+
60
+ def make_square(img: np.ndarray):
61
+ # Get dimensions
62
+ height, width = img.shape[:2]
63
+
64
+ # Find the larger dimension
65
+ max_dim = max(height, width)
66
+
67
+ # Calculate padding
68
+ pad_height = (max_dim - height) // 2
69
+ pad_width = (max_dim - width) // 2
70
+
71
+ # Handle odd dimensions
72
+ pad_height_extra = max_dim - height - 2 * pad_height
73
+ pad_width_extra = max_dim - width - 2 * pad_width
74
+
75
+ # Create padding with edge colors
76
+ if len(img.shape) == 3: # Color image
77
+ # Pad the image
78
+ padded = np.pad(
79
+ img,
80
+ (
81
+ (pad_height, pad_height + pad_height_extra),
82
+ (pad_width, pad_width + pad_width_extra),
83
+ (0, 0),
84
+ ),
85
+ mode="edge",
86
+ )
87
+ else: # Grayscale image
88
+ padded = np.pad(
89
+ img,
90
+ (
91
+ (pad_height, pad_height + pad_height_extra),
92
+ (pad_width, pad_width + pad_width_extra),
93
+ ),
94
+ mode="edge",
95
+ )
96
+
97
+ return padded
98
+
99
+ def exclude_scaling_box(
100
+ image: np.ndarray,
101
+ bbox: np.ndarray,
102
+ orig_size: tuple,
103
+ processed_size: tuple,
104
+ expansion_factor: float = 1.5,
105
+ ) -> np.ndarray:
106
+ # Unpack the bounding box
107
+ x_min, y_min, x_max, y_max = map(int, bbox)
108
+
109
+ # Calculate scaling factors
110
+ scale_x = processed_size[1] / orig_size[1] # Width scale
111
+ scale_y = processed_size[0] / orig_size[0] # Height scale
112
+
113
+ # Adjust bounding box coordinates
114
+ x_min = int(x_min * scale_x)
115
+ x_max = int(x_max * scale_x)
116
+ y_min = int(y_min * scale_y)
117
+ y_max = int(y_max * scale_y)
118
+
119
+ # Calculate expanded box coordinates
120
+ box_width = x_max - x_min
121
+ box_height = y_max - y_min
122
+ expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
123
+ expanded_x_max = min(
124
+ image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
125
+ )
126
+ expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
127
+ expanded_y_max = min(
128
+ image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
129
+ )
130
+
131
+ # Black out the expanded region
132
+ image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
133
+
134
+ return image
135
+
136
+ def resample_contour(contour):
137
+ # Get all the parameters at the start:
138
+ num_points = 1000
139
+ smoothing_factor = 5
140
+ spline_degree = 3 # Typically k=3 for cubic spline
141
+
142
+ smoothed_x_sigma = 1
143
+ smoothed_y_sigma = 1
144
+
145
+ # Ensure contour has enough points
146
+ if len(contour) < spline_degree + 1:
147
+ raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
148
+
149
+ contour = contour[:, 0, :]
150
+
151
+ tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
152
+ u = np.linspace(0, 1, num_points)
153
+ resampled_points = splev(u, tck)
154
+
155
+ smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
156
+ smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
157
+
158
+ return np.array([smoothed_x, smoothed_y]).T
159
+
160
+
161
+
162
+ def save_dxf_spline(inflated_contours, scaling_factor, height):
163
+ degree = 3
164
+ closed = True
165
+
166
+ # Create a new DXF document with millimeters as the unit
167
+ doc = ezdxf.new(units=ezdxf.units.MM)
168
+ doc.units = ezdxf.units.MM # Ensure units are millimeters
169
+ doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters
170
+
171
+ msp = doc.modelspace()
172
+
173
+ for contour in inflated_contours:
174
+ try:
175
+ resampled_contour = resample_contour(contour)
176
+ points = [
177
+ (x * scaling_factor, (height - y) * scaling_factor)
178
+ for x, y in resampled_contour
179
+ ]
180
+ if len(points) >= 3:
181
+ if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
182
+ points.append(points[0])
183
+
184
+ spline = msp.add_spline(points, degree=degree)
185
+ spline.closed = closed
186
+
187
+ except ValueError as e:
188
+ print(f"Skipping contour: {e}")
189
+
190
+ dxf_filepath = os.path.join("./outputs", "out.dxf")
191
+ doc.saveas(dxf_filepath)
192
+
193
+ return dxf_filepath
194
+
195
+
196
+ def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
197
+ """
198
+ Extracts and draws the outlines of masks from a binary image.
199
+ Args:
200
+ binary_image: Grayscale binary image where white represents masks and black is the background.
201
+ Returns:
202
+ Image with outlines drawn.
203
+ """
204
+ # Detect contours from the binary image
205
+ contours, _ = cv2.findContours(
206
+ binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
207
+ )
208
+
209
+ outline_image = np.zeros_like(binary_image)
210
+
211
+ # Draw the contours on the blank image
212
+ cv2.drawContours(
213
+ outline_image, contours, -1, (255), thickness=1
214
+ ) # White color for outlines
215
+
216
+ return cv2.bitwise_not(outline_image), contours
217
+
218
+ def to_dxf(contours):
219
+ # Create a new DXF document with millimeters as the unit
220
+ doc = ezdxf.new(units=ezdxf.units.MM)
221
+ doc.units = ezdxf.units.MM # Ensure units are millimeters
222
+ doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters)
223
+ msp = doc.modelspace()
224
+
225
+ try:
226
+ for contour in contours:
227
+ points = [(point[0][0], point[0][1]) for point in contour]
228
+ msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
229
+ except Exception as e:
230
+ raise gr.Error(f"Unable to generate DXF: {e}")
231
+
232
+ output_path = "./outputs/out2.dxf"
233
+ doc.saveas(output_path)
234
+ return output_path
235
+
236
+ def smooth_contours(contour):
237
+ epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
238
+ return cv2.approxPolyDP(contour, epsilon, True)
239
+
240
+
241
+ def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
242
+ """
243
+ Resize image by scaling both width and height by the same factor.
244
+ Args:
245
+ image: Input numpy image
246
+ scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
247
+ Returns:
248
+ np.ndarray: Resized image
249
+ """
250
+ if scale_factor <= 0:
251
+ raise ValueError("Scale factor must be positive")
252
+
253
+ current_height, current_width = image.shape[:2]
254
+
255
+ # Calculate new dimensions
256
+ new_width = int(current_width * scale_factor)
257
+ new_height = int(current_height * scale_factor)
258
+
259
+ # Choose interpolation method based on whether we're scaling up or down
260
+ interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
261
+
262
+ # Resize image
263
+ resized_image = cv2.resize(
264
+ image, (new_width, new_height), interpolation=interpolation
265
+ )
266
+
267
+ return resized_image
268
+
269
+ def detect_reference_square(img) -> np.ndarray:
270
+ box_detector = YOLO("./best1.pt")
271
+ res = box_detector.predict(img, conf=0.05)
272
+ del box_detector
273
+ return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
274
+ 0
275
+ ].cpu().boxes.xyxy[0]
276
+
277
+
278
+ def resize_img(img: np.ndarray, resize_dim):
279
+ return np.array(Image.fromarray(img).resize(resize_dim))
280
+
281
+
282
+ # Load selected language file
283
+ def load_language(lang_code):
284
+ with open(f'./locales/{lang_code}.json', 'r') as f:
285
+ return json.load(f)
286
+
287
+ def predict(image, offset, coin_size_mm):
288
+ # Load the selected language
289
+ # translations = load_language(language)
290
+
291
+ if offset <= -1:
292
+ raise gr.Error("Offset Value Can't be too SMALL for OBJECT's Mask Dilation")
293
+
294
+ try:
295
+ reference_obj_img, scaling_box_coords = detect_reference_square(image)
296
+ except:
297
+ raise gr.Error("Unable to detect the COIN. Please try again with different magnification.")
298
+
299
+ reference_obj_img = make_square(reference_obj_img)
300
+
301
+ reference_square_mask = remove_bg(reference_obj_img)
302
+
303
+ reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0]))
304
+
305
+ try:
306
+ scaling_factor= calculate_scaling_factor(
307
+ reference_image_path="./coin.jpg",
308
+ target_image=reference_square_mask,
309
+ reference_obj_size_mm = coin_size_mm,
310
+ feature_detector="ORB",
311
+ )
312
+ except Exception as e:
313
+ scaling_factor = None
314
+ print(f"Error calculating scaling factor: {e}")
315
+
316
+ # Default to a scaling factor if calculation fails
317
+ if scaling_factor is None or scaling_factor == 0:
318
+ scaling_factor = 0.07
319
+ print("Using default scaling factor due to calculation error")
320
+
321
+ orig_size = image.shape[:2]
322
+ objects_mask = remove_bg(image)
323
+ processed_size = objects_mask.shape[:2]
324
+
325
+ objects_mask = exclude_scaling_box(
326
+ objects_mask,
327
+ scaling_box_coords,
328
+ orig_size,
329
+ processed_size,
330
+ expansion_factor=1.2,
331
+ )
332
+ objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
333
+
334
+ # Ensure offset_inches is valid
335
+ if scaling_factor != 0:
336
+ offset_pixels = (float(offset) / float(scaling_factor)) * 2 + 1
337
+ else:
338
+ offset_pixels = 1 # Default value in case of invalid scaling factor
339
+
340
+ dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
341
+
342
+ Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
343
+ outlines, contours = extract_outlines(dilated_mask)
344
+ shrunked_img_contours = cv2.drawContours(image, contours, -1, (0, 0, 255), thickness=2)
345
+ dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
346
+
347
+ return (
348
+ shrunked_img_contours,
349
+ outlines,
350
+ dxf,
351
+ dilated_mask,
352
+ scaling_factor,
353
+ )
354
+
355
+ if __name__ == "__main__":
356
+ os.makedirs("./outputs", exist_ok=True)
357
+
358
+ # Language selector in UI
359
+ ifer = gr.Interface(
360
+ fn=predict,
361
+ inputs=[
362
+ gr.Image(label="Input Image", type="numpy"),
363
+ gr.Number(label="Offset value for Mask(mm)", value=0.15),
364
+ gr.Number(label="Diameter of reference coin(mm). Adjust according to coin.", value=22),
365
+ # gr.Dropdown(["en", "nl"], label="Language", value="en") # Default English
366
+ ],
367
+ outputs=[
368
+ gr.Image(label="Output Image"),
369
+ gr.Image(label="Outlines of Objects"),
370
+ gr.File(label="DXF file"),
371
+ gr.Image(label="Mask"),
372
+ gr.Textbox(
373
+ label="Scaling Factor(mm)",
374
+ placeholder="Every pixel is equal to mentioned number in millimeters",
375
+ ),
376
+ ],
377
+ examples=[
378
+ ["./examples/Test20.jpg", 0.15],
379
+ ["./examples/Test21.jpg", 0.15],
380
+ ["./examples/Test22.jpg", 0.15],
381
+ ["./examples/Test23.jpg", 0.15],
382
+ ],
383
+ )
384
+ ifer.launch(share=True)
385
+
386
+
387
+ # if __name__ == "__main__":
388
+ # os.makedirs("./outputs", exist_ok=True)
389
+
390
+ # ifer = gr.Interface(
391
+ # fn=predict,
392
+ # inputs=[
393
+ # gr.Image(label="Input Image"),
394
+ # gr.Number(label="Offset value for Mask(mm)", value=2),
395
+ # ],
396
+ # outputs=[
397
+ # gr.Image(label="Ouput Image"),
398
+ # gr.Image(label="Outlines of Objects"),
399
+ # gr.File(label="DXF file"),
400
+ # gr.Image(label="Mask"),
401
+ # gr.Textbox(
402
+ # label="Scaling Factor(mm)",
403
+ # placeholder="Every pixel is equal to mentioned number in millimeters",
404
+ # ),
405
+ # ],
406
+ # examples=[
407
+ # ["./examples/Test20.jpg", 2],
408
+ # ["./examples/Test21.jpg", 2],
409
+ # ["./examples/Test22.jpg", 2],
410
+ # ["./examples/Test23.jpg", 2],
411
+ # ],
412
+ # )
413
+ # ifer.launch(share=True)
414
+
415
+
416
+