Spaces:
Running
Running
File size: 1,936 Bytes
0dcb80d e28d8f1 0dcb80d 1a4daa4 0dcb80d 8161e32 0dcb80d e28d8f1 0dcb80d e28d8f1 0dcb80d 1a4daa4 0dcb80d e28d8f1 0dcb80d e28d8f1 0dcb80d e28d8f1 0dcb80d e28d8f1 0dcb80d 5edc534 0dcb80d e28d8f1 0dcb80d e28d8f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
import cv2
import time
import numpy as np
from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction
from pathlib import Path
# Load the detection model
detection_model = AutoDetectionModel.from_pretrained(
model_type='ultralytics',
model_path="./DDR.pt", # Replace with your model path
confidence_threshold=0.01,
device="cpu" # Change to 'cuda:0' if you have a GPU
)
OUTPUT_PATH = "./pred_image.jpg"
TEMP_PNG_PATH = "./pred_image.png"
def wait_for_file(file_path, timeout=10):
"""Poll for the file to exist until the timeout (in seconds) is reached."""
start_time = time.time()
while not Path(file_path).exists():
if time.time() - start_time > timeout:
return False
time.sleep(0.5)
return True
def run_inference(image):
# Perform sliced prediction on the input image.
result = get_sliced_prediction(
image,
detection_model,
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2
)
# Export visualization to a temporary PNG file.
result.export_visuals(export_dir=Path(TEMP_PNG_PATH).parent, file_name=Path(TEMP_PNG_PATH).name)
# Wait for the PNG file to be created.
if not wait_for_file(TEMP_PNG_PATH, timeout=10):
raise FileNotFoundError(f"SAHI did not save the PNG file at {TEMP_PNG_PATH}")
# Read the PNG image, convert it to JPG, and remove the temporary file.
processed_image = cv2.imread(TEMP_PNG_PATH)
cv2.imwrite(OUTPUT_PATH, processed_image)
Path(TEMP_PNG_PATH).unlink() # Delete the temporary PNG
return OUTPUT_PATH
demo = gr.Interface(
fn=run_inference,
inputs=gr.Image(type="numpy"),
outputs=gr.Image(type="filepath"),
title="YOLO11 Object Detection",
description="Upload an image to run inference using YOLO11"
)
demo.launch(share=True) |