Spaces:
Running
Running
File size: 48,859 Bytes
f32744f bc99e62 052acac f32744f 3850225 f32744f dcf3b0f f32744f 017b32e bc99e62 f32744f dcf3b0f f32744f dcf3b0f f32744f 5fd20fc ccfaa45 5fd20fc f32744f dcf3b0f f32744f 6942bb2 5fd20fc f32744f 5fd20fc f32744f dcf3b0f f32744f dcf3b0f f32744f f858b25 5fd20fc f858b25 f32744f f858b25 f32744f 8a3f8ca f32744f 3850225 f32744f 3850225 f32744f 3850225 f32744f dcf3b0f f32744f dcf3b0f f32744f dcf3b0f 3850225 f32744f 3850225 f32744f dcf3b0f f32744f 3850225 f32744f 8a3f8ca f32744f 6f52602 017b32e f32744f 017b32e 6f52602 f32744f 017b32e 6f52602 017b32e 6f52602 8a3f8ca 6f52602 8a3f8ca 6f52602 8a3f8ca 017b32e 86c2d29 f32744f bc99e62 052acac dcf3b0f f32744f 3850225 39e7a09 3850225 f32744f 017b32e f32744f 6f52602 f32744f 86c2d29 6f52602 f32744f 63367de b87650f 86c2d29 54bcad2 86c2d29 54bcad2 f32744f a13f1f1 54bcad2 a13f1f1 54bcad2 a13f1f1 54bcad2 86c2d29 54bcad2 86c2d29 f32744f dcf3b0f a13f1f1 86c2d29 f32744f 6f52602 dcf3b0f f32744f f858b25 f32744f dcf3b0f f32744f 86c2d29 f32744f dcf3b0f f32744f 86c2d29 017b32e 54bcad2 017b32e 8791959 86c2d29 017b32e 86c2d29 f32744f 86c2d29 dcf3b0f f32744f 86c2d29 f32744f f858b25 f32744f 86c2d29 f32744f 747e504 f858b25 747e504 f32744f f858b25 f32744f f858b25 f32744f 86c2d29 9193ad6 86c2d29 a13f1f1 86c2d29 f32744f 86c2d29 8a3f8ca a13f1f1 86c2d29 f32744f 86c2d29 f32744f bc99e62 f32744f ba47237 bc99e62 052acac bc99e62 052acac bc99e62 f858b25 86c2d29 f32744f 86c2d29 62a0b65 86c2d29 f32744f bc99e62 9193ad6 bc99e62 9193ad6 f858b25 ec896ae bc99e62 ec896ae f858b25 bc99e62 ec896ae bc99e62 ec896ae bc99e62 ec896ae bc99e62 ec896ae bc99e62 f858b25 ba47237 bc99e62 f858b25 ec896ae f858b25 bc99e62 f858b25 ba47237 052acac bc99e62 f858b25 86c2d29 747e504 f32744f f858b25 f32744f 017b32e f32744f 017b32e f32744f 017b32e f32744f bc99e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 |
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
from ezdxf.addons.text2path import make_paths_from_str
from ezdxf import path
from ezdxf.addons import text2path
from ezdxf.enums import TextEntityAlignment
from ezdxf.fonts.fonts import FontFace, get_font_face
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP
# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
"""Raised when the drawer cannot be detected in the image"""
pass
class ReferenceBoxNotDetectedError(Exception):
"""Raised when the Reference coin cannot be detected in the image"""
pass
class BoundaryOverlapError(Exception):
"""Raised when the optional boundary dimensions are too small and overlap with the inner contours."""
pass
class TextOverlapError(Exception):
"""Raised when the text overlaps with the inner contours (with a margin of 0.75)."""
pass
# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
print("Caching YOLOWorld model to", yolo_model_path)
shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "coin_det.pt")
if not os.path.exists(reference_model_path):
print("Caching YOLO reference model to", reference_model_path)
shutil.copy("coin_det.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
print("Caching U²-Net model to", u2net_model_path)
shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))
# Define transform for BiRefNet
transform_image_global = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
print("Reloading models...")
start_time = time.time()
del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
new_drawer_detector.set_classes(["box"])
new_reference_detector = YOLO(os.path.join(CACHE_DIR, "coin_det.pt"))
new_birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
new_birefnet.to(device)
new_birefnet.eval()
new_u2net = U2NETP(3, 1)
new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
new_u2net.to(device)
new_u2net.eval()
drawer_detector_global = new_drawer_detector
reference_detector_global = new_reference_detector
birefnet_global = new_birefnet
u2net_global = new_u2net
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
t = time.time()
results: List[Results] = drawer_detector_global.predict(image)
if not results or len(results) == 0 or len(results[0].boxes) == 0:
raise DrawerNotDetectedError("Drawer not detected in the image.")
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)
def detect_reference_square(img: np.ndarray):
t = time.time()
res = reference_detector_global.predict(img, conf=0.3)
if not res or len(res) == 0 or len(res[0].boxes) == 0:
raise ReferenceBoxNotDetectedError("Reference Coin not detected in the image.")
print("Reference detection completed in {:.2f} seconds".format(time.time() - t))
return (
save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
res[0].cpu().boxes.xyxy[0]
)
# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
outputs = u2net_global(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
return pred_np
# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet_global(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
result = np.array(pred_pil.resize(scaled_size))
print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
return result
def make_square(img: np.ndarray):
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0)), mode="edge")
else:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra)), mode="edge")
return padded
def shrink_bbox(image: np.ndarray, shrink_factor: float):
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
return image[y1:y2, x1:x2]
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
x_min, y_min, x_max, y_max = map(int, bbox)
scale_x = processed_size[1] / orig_size[1]
scale_y = processed_size[0] / orig_size[0]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour):
num_points = 1000
smoothing_factor = 5
spline_degree = 3
if len(contour) < spline_degree + 1:
raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
contour = contour[:, 0, :]
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
return np.array([smoothed_x, smoothed_y]).T
# ---------------------
# Add the missing extract_outlines function
# ---------------------
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
outline_image = np.zeros_like(binary_image)
cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
return cv2.bitwise_not(outline_image), contours
# ---------------------
# Functions for Finger Cut Clearance
# ---------------------
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
radius = circle_diameter / 2.0
circle_poly = Point(center_inch).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
return union_poly
def build_tool_polygon(points_inch):
return Polygon(points_inch)
def polygon_to_exterior_coords(poly: Polygon):
if poly.geom_type == "MultiPolygon":
biggest = max(poly.geoms, key=lambda g: g.area)
poly = biggest
if not poly.exterior:
return []
return list(poly.exterior.coords)
# def place_finger_cut_adjusted(
# tool_polygon,
# points_inch,
# existing_centers,
# all_polygons,
# circle_diameter=1, # Finger cut circle diameter in inches.
# min_gap=0.25, # Minimum clearance (in inches) between the finger cut and adjacent contours.
# max_attempts=50 # Maximum candidate attempts.
# ):
# """
# Attempts to place a finger-cut circle along the tool polygon's contour, biased toward one side
# (the boundary side) by shifting the candidate center away from the polygon centroid.
# The candidate circle is merged with the tool polygon via union_tool_and_circle().
# Debug information is printed to help trace candidate evaluation.
# :param tool_polygon: Shapely Polygon representing the tool contour.
# :param points_inch: List of (x, y) points (in inches) along the contour.
# :param existing_centers: List of already accepted finger cut centers.
# :param all_polygons: List of all polygons (for overlap checking).
# :param circle_diameter: Diameter of the finger cut (in inches).
# :param min_gap: Clearance (in inches) required between the finger cut and any adjacent contour.
# :param max_attempts: Maximum number of candidate attempts.
# :return: (updated_polygon, candidate_center) if successful; otherwise, (None, None).
# """
# import random
# from shapely.geometry import Point
# import numpy as np
# needed_center_distance = circle_diameter + min_gap
# radius = circle_diameter / 2.0
# attempts = 0
# # Parameter: how far to push the candidate center outward.
# # Here we set it to half the circle radius, but you can adjust this as needed.
# outward_offset = radius * 0.1
# # Compute the centroid of the tool polygon once.
# polygon_centroid = tool_polygon.centroid
# # Create a safe version of the polygon via an inward buffer.
# safe_tool_polygon = tool_polygon.buffer(-min_gap)
# if safe_tool_polygon.is_empty:
# safe_tool_polygon = tool_polygon
# # Shuffle the contour indices for randomness.
# indices = list(range(len(points_inch)))
# random.shuffle(indices)
# for i in indices:
# if attempts >= max_attempts:
# break
# # Base candidate point from the resampled contour:
# base_x, base_y = points_inch[i]
# # Try a grid of offsets from this candidate base point.
# for dx in np.linspace(-0.3, 0.3, 15):
# for dy in np.linspace(-0.3, 0.3, 15):
# # Compute an initial candidate point.
# candidate_unshifted = (base_x + dx, base_y + dy)
# # Compute the outward direction based on the vector from the centroid to candidate.
# vec_x = candidate_unshifted[0] - polygon_centroid.x
# vec_y = candidate_unshifted[1] - polygon_centroid.y
# norm = np.hypot(vec_x, vec_y)
# if norm == 0:
# continue # Skip degenerate case.
# # Normalize the outward vector.
# unit_vec = (vec_x / norm, vec_y / norm)
# # Push the candidate center further out so it lies along the boundary.
# candidate_center = (candidate_unshifted[0] + unit_vec[0] * outward_offset,
# candidate_unshifted[1] + unit_vec[1] * outward_offset)
# # Check that candidate center is not too close to previously accepted centers.
# if any(np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) < needed_center_distance
# for ex, ey in existing_centers):
# continue
# # Create the candidate circle.
# candidate_circle = Point(candidate_center).buffer(radius, resolution=64)
# # Check if the candidate circle is mostly on the boundary:
# area_ratio = candidate_circle.intersection(tool_polygon).area / candidate_circle.area
# # Debug: Show candidate center and its area ratio.
# #print(f"Candidate center: {candidate_center}, area_ratio: {area_ratio:.2f}")
# # Accept if at least 70% of the circle's area lies within the tool polygon.
# if area_ratio < 0.6:
# continue
# # Merge candidate circle with tool polygon using the existing union function.
# candidate_union = union_tool_and_circle(tool_polygon, candidate_center, circle_diameter)
# # Overlap check: ensure this candidate does not intrude on any other object.
# overlap = False
# for other_poly in all_polygons:
# if other_poly.equals(tool_polygon):
# continue
# if candidate_union.intersects(other_poly) or candidate_circle.buffer(min_gap).intersects(other_poly):
# overlap = True
# #print(f"Candidate at {candidate_center} rejected due to overlap.")
# break
# if overlap:
# continue
# # Candidate accepted.
# print(f"Accepted candidate center: {candidate_center} with area_ratio: {area_ratio:.2f}")
# existing_centers.append(candidate_center)
# return candidate_union, candidate_center
# attempts += 1
# print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
# return None, None
# def place_finger_cut_adjusted(
# tool_polygon,
# points_inch,
# existing_centers,
# all_polygons,
# circle_diameter=1.0, # Finger cut circle diameter in inches.
# min_gap=0.25, # Minimum clearance (in inches) between the finger cut and adjacent contours.
# max_attempts=50 # Maximum candidate attempts.
# ):
# """
# Attempts to place a finger-cut circle along the tool polygon's contour, biased toward one side
# (the boundary side) by shifting the candidate center away from the polygon centroid.
# Simplified version that maintains core functionality while using a more streamlined approach.
# :param tool_polygon: Shapely Polygon representing the tool contour.
# :param points_inch: List of (x, y) points (in inches) along the contour.
# :param existing_centers: List of already accepted finger cut centers.
# :param all_polygons: List of all polygons (for overlap checking).
# :param circle_diameter: Diameter of the finger cut (in inches).
# :param min_gap: Clearance (in inches) required between the finger cut and any adjacent contour.
# :param max_attempts: Maximum number of candidate attempts.
# :return: (updated_polygon, candidate_center) if successful; otherwise, (None, None).
# """
# import random
# import numpy as np
# from shapely.geometry import Point
# needed_center_distance = circle_diameter + min_gap
# radius = circle_diameter / 2.0
# # Compute the centroid of the tool polygon once.
# polygon_centroid = tool_polygon.centroid
# # Parameter: how far to push the candidate center outward.
# outward_offset = radius * 0.5
# # Try random points along the contour
# indices = list(range(len(points_inch)))
# random.shuffle(indices)
# for idx in indices[:max_attempts]:
# # Get base point from contour
# base_x, base_y = points_inch[idx]
# # Calculate the outward vector from centroid to point
# vec_x = base_x - polygon_centroid.x
# vec_y = base_y - polygon_centroid.y
# norm = np.hypot(vec_x, vec_y)
# if norm == 0:
# continue # Skip if point is at centroid
# # Normalize and calculate shifted candidate center
# unit_vec = (vec_x / norm, vec_y / norm)
# candidate_center = (base_x + unit_vec[0] * outward_offset,
# base_y + unit_vec[1] * outward_offset)
# # Check distance from existing centers
# too_close = False
# for (ex_x, ex_y) in existing_centers:
# if np.hypot(candidate_center[0] - ex_x, candidate_center[1] - ex_y) < needed_center_distance:
# too_close = True
# break
# if too_close:
# continue
# # Create the candidate circle
# candidate_circle = Point(candidate_center).buffer(radius, resolution=64)
# # Check if circle is mostly on the boundary (at least 60% inside)
# area_ratio = candidate_circle.intersection(tool_polygon).area / candidate_circle.area
# if area_ratio < 0.6:
# continue
# # Merge candidate with tool polygon
# union_poly = union_tool_and_circle(tool_polygon, candidate_center, circle_diameter)
# # Check for overlaps with other polygons
# overlap = False
# for other_poly in all_polygons:
# if other_poly.equals(tool_polygon):
# continue
# if union_poly.intersects(other_poly) or candidate_circle.buffer(min_gap).intersects(other_poly):
# overlap = True
# break
# if overlap:
# continue
# # Candidate accepted
# print(f"Accepted candidate center: {candidate_center} with area_ratio: {area_ratio:.2f}")
# existing_centers.append(candidate_center)
# return union_poly, candidate_center
# print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
# return None, None
# def place_finger_cut_adjusted(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=100):
# import random
# needed_center_distance = circle_diameter + min_gap
# radius = circle_diameter / 2.0
# for _ in range(max_attempts):
# idx = random.randint(0, len(points_inch) - 1)
# cx, cy = points_inch[idx]
# too_close = False
# for (ex_x, ex_y) in existing_centers:
# if np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance:
# too_close = True
# break
# if too_close:
# continue
# circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
# union_poly = tool_polygon.union(circle_poly)
# overlap_with_others = False
# too_close_to_others = False
# for poly in all_polygons:
# if union_poly.intersects(poly):
# overlap_with_others = True
# break
# if circle_poly.buffer(min_gap).intersects(poly):
# too_close_to_others = True
# break
# if overlap_with_others or too_close_to_others:
# continue
# existing_centers.append((cx, cy))
# return union_poly, (cx, cy)
# print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
# return None, None
# def place_finger_cut_adjusted(tool_polygon, points_inch, existing_centers, all_polygons, 2nd best
# circle_diameter=1.0, min_gap=0.25, max_attempts=30):
# import random
# from shapely.geometry import Point
# # Analyze bounding box
# bounds = tool_polygon.bounds # (minx, miny, maxx, maxy)
# width = bounds[2] - bounds[0]
# height = bounds[3] - bounds[1]
# min_dim = min(width, height)
# # Adjust circle diameter based on tool size
# scale_factor = min(1.0, min_dim / 2.0) # Adjust this factor to control size sensitivity
# adjusted_diameter = circle_diameter * scale_factor
# radius = adjusted_diameter / 2.0
# needed_center_distance = adjusted_diameter + min_gap
# for _ in range(max_attempts):
# idx = random.randint(0, len(points_inch) - 1)
# cx, cy = points_inch[idx]
# # Check distance from existing centers
# if any(np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance for ex_x, ex_y in existing_centers):
# continue
# circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
# union_poly = tool_polygon.union(circle_poly)
# overlap_with_others = any(union_poly.intersects(poly) for poly in all_polygons)
# too_close_to_others = any(circle_poly.buffer(min_gap).intersects(poly) for poly in all_polygons)
# if overlap_with_others or too_close_to_others:
# continue
# existing_centers.append((cx, cy))
# return union_poly, (cx, cy)
# print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
# return None, None
def place_finger_cut_adjusted(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30): #1st best
needed_center_distance = circle_diameter + min_gap
radius = circle_diameter / 2.0
import random
for _ in range(max_attempts):
idx = random.randint(0, len(points_inch) - 1)
cx, cy = points_inch[idx]
# Check if this point is too close to an existing center
too_close = any(np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance for ex_x, ex_y in existing_centers)
if too_close:
continue
# Create the finger cut circle and try adding it to the tool
circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
# Check for overlap and spacing with other tools
overlap_with_others = False
too_close_to_others = False
for poly in all_polygons:
if poly.equals(tool_polygon):
continue # Skip comparing the tool to itself
if union_poly.intersects(poly):
overlap_with_others = True
break
if circle_poly.buffer(min_gap).intersects(poly):
too_close_to_others = True
break
if overlap_with_others or too_close_to_others:
continue
existing_centers.append((cx, cy))
return union_poly, (cx, cy)
print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
return None, None
# def place_finger_cut_adjusted(tool_polygon, points_inch, existing_centers, all_polygons,
# circle_diameter=1.0, min_gap=0.25, max_attempts=30):
# fallback_diameters = [circle_diameter, 0.75, 0.5, 0.4] # Try these in order
# for fallback_d in fallback_diameters:
# radius = fallback_d / 2.0
# needed_center_distance = fallback_d + min_gap
# for _ in range(max_attempts):
# idx = random.randint(0, len(points_inch) - 1)
# cx, cy = points_inch[idx]
# # Check distance from existing centers
# too_close = any(np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance
# for ex_x, ex_y in existing_centers)
# if too_close:
# continue
# # Create and check the finger cut circle
# circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
# union_poly = tool_polygon.union(circle_poly)
# if not union_poly.is_valid:
# continue # Skip invalid geometry
# # Check against all other polygons strictly
# overlap = False
# for poly in all_polygons:
# if poly.equals(tool_polygon):
# continue
# # Shrink slightly to avoid even edge contact
# if union_poly.intersects(poly.buffer(-1e-3)):
# overlap = True
# break
# if circle_poly.buffer(min_gap).intersects(poly):
# overlap = True
# break
# if overlap:
# continue
# # Final sanity check
# for poly in all_polygons:
# if poly.equals(tool_polygon):
# continue
# if union_poly.intersects(poly):
# print("Overlap slipped through. Rejecting.")
# overlap = True
# break
# if overlap:
# continue
# existing_centers.append((cx, cy))
# return union_poly, (cx, cy)
# # If we get here, all attempts failed — still try placing smallest fallback
# print("Warning: Could not place cleanly. Forcing smallest fallback.")
# smallest_radius = fallback_diameters[-1] / 2.0
# for _ in range(100):
# idx = random.randint(0, len(points_inch) - 1)
# cx, cy = points_inch[idx]
# circle_poly = Point((cx, cy)).buffer(smallest_radius, resolution=64)
# union_poly = tool_polygon.union(circle_poly)
# if union_poly.is_valid:
# existing_centers.append((cx, cy))
# return union_poly, (cx, cy)
# # Absolute fallback — return original tool without finger cut
# print("Failed to place even smallest fallback. No cutout added.")
# return tool_polygon, None
# def place_finger_cut_adjusted(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30):
# import random
# import numpy as np
# from shapely.geometry import Point, Polygon
# needed_center_distance = circle_diameter + min_gap
# radius = circle_diameter / 2.0
# for _ in range(max_attempts):
# idx = random.randint(0, len(points_inch) - 1)
# cx, cy = points_inch[idx]
# # Check against existing centers
# too_close = any(np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance for (ex_x, ex_y) in existing_centers)
# if too_close:
# continue
# circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
# # Ensure circle intersects the tool to form a valid cut
# if not circle_poly.intersects(tool_polygon):
# continue
# # Check proximity to other polygons
# if any(circle_poly.buffer(min_gap).intersects(poly) for poly in all_polygons):
# continue
# # Subtract circle from tool and check for overlaps
# difference_poly = tool_polygon.difference(circle_poly)
# if any(difference_poly.intersects(poly) for poly in all_polygons):
# continue
# existing_centers.append((cx, cy))
# return difference_poly, (cx, cy)
# print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
# return None, None
# ---------------------
# DXF Spline and Boundary Functions
# ---------------------
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
degree = 3
closed = True
doc = ezdxf.new(units=0)
doc.units = ezdxf.units.IN
doc.header["$INSUNITS"] = ezdxf.units.IN
msp = doc.modelspace()
finger_cut_centers = []
final_polygons_inch = []
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
if len(points_inch) < 3:
continue
if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
points_inch.append(points_inch[0])
tool_polygon = build_tool_polygon(points_inch)
if finger_clearance:
union_poly, center = place_finger_cut_adjusted(tool_polygon, points_inch, finger_cut_centers, final_polygons_inch, circle_diameter=1.0, min_gap=0.25, max_attempts=100)
if union_poly is not None:
tool_polygon = union_poly
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
except ValueError as e:
print(f"Skipping contour: {e}")
return doc, final_polygons_inch
def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, offset_unit, annotation_text="", image_height_in=None, image_width_in=None):
msp = doc.modelspace()
# Convert from mm if necessary
if offset_unit.lower() == "mm":
if boundary_length < 50:
boundary_length = boundary_length * 25.4
if boundary_width < 50:
boundary_width = boundary_width * 25.4
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
# Compute bounding box of inner contours
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in polygons_inch:
b = poly.bounds
min_x = min(min_x, b[0])
min_y = min(min_y, b[1])
max_x = max(max_x, b[2])
max_y = max(max_y, b[3])
if min_x == float("inf"):
print("No tool polygons found, skipping boundary.")
return None
# Compute inner bounding box dimensions
inner_width = max_x - min_x
inner_length = max_y - min_y
# Set clearance margins
clearance_side = 0.25 # left/right clearance
clearance_tb = 0.25 # top/bottom clearance
if annotation_text.strip():
clearance_tb = 0.75
# Calculate center of inner contours
center_x = (min_x + max_x) / 2
center_y = (min_y + max_y) / 2
# Draw rectangle centered at (center_x, center_y)
left = center_x - boundary_width_in / 2
right = center_x + boundary_width_in / 2
bottom = center_y - boundary_length_in / 2
top = center_y + boundary_length_in / 2
rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
from shapely.geometry import Polygon as ShapelyPolygon
boundary_polygon = ShapelyPolygon(rect_coords)
msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
text_top = boundary_polygon.bounds[1] + 1
too_small = boundary_width_in < inner_width + 2 * clearance_side or boundary_length_in < inner_length + 2 * clearance_tb
if too_small:
raise BoundaryOverlapError("Error: The specified boundary dimensions are too small and overlap with the inner contours. Please provide larger values.")
if annotation_text.strip() and text_top > min_y - 0.75:
raise TextOverlapError("Error: The text is too close to the inner contours. Please increase boundary length.")
return boundary_polygon
def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
for poly in polygons_inch:
if poly.geom_type == "MultiPolygon":
for subpoly in poly.geoms:
draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
else:
draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)
def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
ext = list(poly.exterior.coords)
if len(ext) < 3:
return
pts_px = []
for (x_in, y_in) in ext:
px = int(x_in / scaling_factor)
py = int(image_height - (y_in / scaling_factor))
pts_px.append([px, py])
pts_px = np.array(pts_px, dtype=np.int32)
cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)
# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
image: Union[str, bytes, np.ndarray],
offset_value: float,
offset_unit: str, # "mm" or "inches"
finger_clearance: str, # "Yes" or "No"
add_boundary: str, # "Yes" or "No"
boundary_length: float,
boundary_width: float,
annotation_text: str
):
overall_start = time.time()
# Convert image to NumPy array if needed
if isinstance(image, str):
if os.path.exists(image):
image = np.array(Image.open(image).convert("RGB"))
else:
try:
image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
except Exception:
raise ValueError("Invalid base64 image data")
# Apply brightness and sharpness enhancement
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
enhanced_image = ImageEnhance.Sharpness(pil_image).enhance(1.5)
image = np.array(enhanced_image)
# ---------------------
# 1) Detect the drawer with YOLOWorld (or use original image if not detected)
# ---------------------
drawer_detected = True
try:
t = time.time()
drawer_img = yolo_detect(image)
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
except DrawerNotDetectedError as e:
print(f"Drawer not detected: {e}, using original image.")
drawer_detected = False
drawer_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Process the image (either cropped drawer or original)
t = time.time()
if drawer_detected:
# For detected drawers: shrink and square
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
else:
# For non-drawer images: keep original dimensions
shrunked_img = drawer_img # Already in BGR format from above
del drawer_img
gc.collect()
print("Image processing completed in {:.2f} seconds".format(time.time() - t))
# ---------------------
# 2) Detect the reference box with YOLO (now works on either cropped or original image)
# ---------------------
try:
t = time.time()
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
print("Reference coin detection completed in {:.2f} seconds".format(time.time() - t))
except ReferenceBoxNotDetectedError as e:
return None, None, None, None, f"Error: {str(e)}"
# ---------------------
# 3) Remove background of the reference box to compute scaling factor
# ---------------------
t = time.time()
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg_u2netp(reference_obj_img)
reference_square_mask= resize_img(reference_square_mask,(reference_obj_img.shape[1],reference_obj_img.shape[0]))
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
try:
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
scaling_factor = calculate_scaling_factor(
target_image=reference_square_mask,
reference_obj_size_mm=0.955,
feature_detector="ORB",
)
except ZeroDivisionError:
scaling_factor = None
print("Error calculating scaling factor: Division by zero")
except Exception as e:
scaling_factor = None
print(f"Error calculating scaling factor: {e}")
if scaling_factor is None or scaling_factor == 0:
scaling_factor = 0.7
print("Using default scaling factor of 0.7 due to calculation error")
gc.collect()
print("Scaling factor determined: {}".format(scaling_factor))
# ---------------------
# 4) Optional boundary dimension checks (now without size limits)
# ---------------------
if add_boundary.lower() == "yes":
if offset_unit.lower() == "mm":
if boundary_length < 50:
boundary_length = boundary_length * 25.4
if boundary_width < 50:
boundary_width = boundary_width * 25.4
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
# ---------------------
# 5) Remove background from the shrunked drawer image (main objects)
# ---------------------
if offset_unit.lower() == "mm":
if offset_value < 1:
offset_value = offset_value * 25.4
offset_inches = offset_value / 25.4
else:
offset_inches = offset_value
t = time.time()
orig_size = shrunked_img.shape[:2]
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
del scaling_box_coords
gc.collect()
print("Object masking completed in {:.2f} seconds".format(time.time() - t))
# Dilate mask by offset_pixels
t = time.time()
offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
del objects_mask
gc.collect()
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
# ---------------------
# 6) Extract outlines from the mask and convert them to DXF splines
# ---------------------
t = time.time()
outlines, contours = extract_outlines(dilated_mask)
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
output_img = shrunked_img.copy()
del shrunked_img
gc.collect()
t = time.time()
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
doc, final_polygons_inch = save_dxf_spline(
contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance
)
del contours
gc.collect()
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
# ---------------------
# Compute bounding box of inner tool contours BEFORE adding optional boundary
# ---------------------
inner_min_x = float("inf")
inner_min_y = float("inf")
inner_max_x = -float("inf")
inner_max_y = -float("inf")
for poly in final_polygons_inch:
b = poly.bounds
inner_min_x = min(inner_min_x, b[0])
inner_min_y = min(inner_min_y, b[1])
inner_max_x = max(inner_max_x, b[2])
inner_max_y = max(inner_max_y, b[3])
# ---------------------
# 7) Add optional rectangular boundary
# ---------------------
boundary_polygon = None
if add_boundary.lower() == "yes":
boundary_polygon = add_rectangular_boundary(
doc,
final_polygons_inch,
boundary_length,
boundary_width,
offset_unit,
annotation_text,
image_height_in=output_img.shape[0] * scaling_factor,
image_width_in=output_img.shape[1] * scaling_factor
)
if boundary_polygon is not None:
final_polygons_inch.append(boundary_polygon)
# ---------------------
# 8) Add annotation text (if provided) in the DXF
# ---------------------
msp = doc.modelspace()
if annotation_text.strip():
text_x = ((inner_min_x + inner_max_x) / 2.0) - (int(len(annotation_text.strip()) / 2.0))
text_height_dxf = 0.75
text_y_dxf = boundary_polygon.bounds[1] + 0.25
font = get_font_face("Arial")
paths = text2path.make_paths_from_str(
annotation_text.strip().upper(),
font=font, # Use default font
size=text_height_dxf,
align=TextEntityAlignment.LEFT
)
# Create a translation matrix
translation = ezdxf.math.Matrix44.translate(text_x, text_y_dxf, 0)
# Apply the translation to each path
translated_paths = [p.transform(translation) for p in paths]
# Render the paths as splines and polylines
path.render_splines_and_polylines(
msp,
translated_paths,
dxfattribs={"layer": "ANNOTATION", "color": 7}
)
# Save the DXF
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
# ---------------------
# 9) For the preview images, draw the polygons and place text similarly
# ---------------------
draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
new_outlines = np.ones_like(output_img) * 255
draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
if annotation_text.strip():
text_height_cv = 0.75
text_x_img = int(((inner_min_x + inner_max_x) / 2.0) / scaling_factor)
text_y_in = boundary_polygon.bounds[1] + 0.25
text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)
# Method 2: Use two different thicknesses
# Draw thicker outline
temp_img = np.zeros_like(output_img)
cv2.putText(
temp_img,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255), # Red color
4, # Thicker outline
cv2.LINE_AA
)
cv2.putText(
temp_img,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 0), # Black to create hole
2, # Thinner inner part
cv2.LINE_AA
)
outline_mask = cv2.cvtColor(temp_img, cv2.COLOR_BGR2GRAY)
_, outline_mask = cv2.threshold(outline_mask, 1, 255, cv2.THRESH_BINARY)
output_img[outline_mask > 0] = temp_img[outline_mask > 0]
cv2.putText(
new_outlines,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255), # Red color
4, # Thicker outline
cv2.LINE_AA
)
cv2.putText(
new_outlines,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(255, 255, 255), # Inner text in white
2, # Thinner inner part
cv2.LINE_AA
)
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
return (
cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
outlines_color,
dxf_filepath,
dilated_mask,
str(scaling_factor)
)
# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
def gradio_predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text):
try:
return predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text)
except Exception as e:
return None, None, None, None, f"Error: {str(e)}"
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(label="Input Image"),
gr.Number(label="Offset value for Mask", value=0.075),
gr.Dropdown(label="Offset Unit", choices=["mm", "inches"], value="inches"),
gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="No"),
gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="No"),
gr.Number(label="Boundary Length", value=300.0, precision=2),
gr.Number(label="Boundary Width", value=200.0, precision=2),
gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
],
outputs=[
gr.Image(label="Output Image"),
gr.Image(label="Outlines of Objects"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(label="Scaling Factor (inches/pixel)")
],
examples=[
["./Test20.jpg", 0.075, "inches", "No", "No", 300.0, 200.0, "MyTool"],
["./Test21.jpg", 0.075, "inches", "Yes", "Yes", 300.0, 200.0, "Tool2"]
]
)
iface.launch(share=True) |