DXF_Generation / app.py
ammariii08's picture
Update app.py
62a0b65 verified
raw
history blame
25.3 kB
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP
# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
"""Raised when the drawer cannot be detected in the image"""
pass
class ReferenceBoxNotDetectedError(Exception):
"""Raised when the reference box cannot be detected in the image"""
pass
# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
print("Caching YOLOWorld model to", yolo_model_path)
shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "last.pt")
if not os.path.exists(reference_model_path):
print("Caching YOLO reference model to", reference_model_path)
shutil.copy("last.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
print("Caching U²-Net model to", u2net_model_path)
shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))
# Define transform for BiRefNet
transform_image_global = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
print("Reloading models...")
start_time = time.time()
del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
new_drawer_detector.set_classes(["box"])
new_reference_detector = YOLO(os.path.join(CACHE_DIR, "last.pt"))
new_birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
new_birefnet.to(device)
new_birefnet.eval()
new_u2net = U2NETP(3, 1)
new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
new_u2net.to(device)
new_u2net.eval()
drawer_detector_global = new_drawer_detector
reference_detector_global = new_reference_detector
birefnet_global = new_birefnet
u2net_global = new_u2net
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
t = time.time()
results: List[Results] = drawer_detector_global.predict(image)
if not results or len(results) == 0 or len(results[0].boxes) == 0:
raise DrawerNotDetectedError("Drawer not detected in the image.")
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)
def detect_reference_square(img: np.ndarray):
t = time.time()
res = reference_detector_global.predict(img, conf=0.45)
if not res or len(res) == 0 or len(res[0].boxes) == 0:
raise ReferenceBoxNotDetectedError("Reference box not detected in the image.")
print("Reference detection completed in {:.2f} seconds".format(time.time() - t))
return (
save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
res[0].cpu().boxes.xyxy[0]
)
# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
outputs = u2net_global(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
return pred_np
# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet_global(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
result = np.array(pred_pil.resize(scaled_size))
print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
return result
def make_square(img: np.ndarray):
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0)), mode="edge")
else:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra)), mode="edge")
return padded
def shrink_bbox(image: np.ndarray, shrink_factor: float):
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
return image[y1:y2, x1:x2]
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
x_min, y_min, x_max, y_max = map(int, bbox)
scale_x = processed_size[1] / orig_size[1]
scale_y = processed_size[0] / orig_size[0]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour):
num_points = 1000
smoothing_factor = 5
spline_degree = 3
if len(contour) < spline_degree + 1:
raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
contour = contour[:, 0, :]
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
return np.array([smoothed_x, smoothed_y]).T
# ---------------------
# Add the missing extract_outlines function
# ---------------------
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
outline_image = np.zeros_like(binary_image)
cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
return cv2.bitwise_not(outline_image), contours
# ---------------------
# Functions for Finger Cut Clearance
# ---------------------
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
radius = circle_diameter / 2.0
circle_poly = Point(center_inch).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
return union_poly
def build_tool_polygon(points_inch):
return Polygon(points_inch)
def polygon_to_exterior_coords(poly: Polygon):
if poly.geom_type == "MultiPolygon":
biggest = max(poly.geoms, key=lambda g: g.area)
poly = biggest
if not poly.exterior:
return []
return list(poly.exterior.coords)
def place_finger_cut_randomly(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30):
import random
needed_center_distance = circle_diameter + min_gap
radius = circle_diameter / 2.0
for _ in range(max_attempts):
idx = random.randint(0, len(points_inch) - 1)
cx, cy = points_inch[idx]
too_close = False
for (ex_x, ex_y) in existing_centers:
if np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance:
too_close = True
break
if too_close:
continue
circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
overlap_with_others = False
too_close_to_others = False
for poly in all_polygons:
if union_poly.intersects(poly):
overlap_with_others = True
break
if circle_poly.buffer(min_gap).intersects(poly):
too_close_to_others = True
break
if overlap_with_others or too_close_to_others:
continue
existing_centers.append((cx, cy))
return union_poly, (cx, cy)
print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
return None, None
# ---------------------
# DXF Spline and Boundary Functions
# ---------------------
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
degree = 3
closed = True
doc = ezdxf.new(units=0)
doc.units = ezdxf.units.IN
doc.header["$INSUNITS"] = ezdxf.units.IN
msp = doc.modelspace()
finger_cut_centers = []
final_polygons_inch = []
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
if len(points_inch) < 3:
continue
if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
points_inch.append(points_inch[0])
tool_polygon = build_tool_polygon(points_inch)
if finger_clearance:
union_poly, center = place_finger_cut_randomly(tool_polygon, points_inch, finger_cut_centers, final_polygons_inch, circle_diameter=1.0, min_gap=0.25, max_attempts=30)
if union_poly is not None:
tool_polygon = union_poly
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
except ValueError as e:
print(f"Skipping contour: {e}")
return doc, final_polygons_inch
def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, boundary_unit):
msp = doc.modelspace()
if boundary_unit == "mm":
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in polygons_inch:
b = poly.bounds
min_x = min(min_x, b[0])
min_y = min(min_y, b[1])
max_x = max(max_x, b[2])
max_y = max(max_y, b[3])
if min_x == float("inf"):
print("No tool polygons found, skipping boundary.")
return None
shape_cx = (min_x + max_x) / 2
shape_cy = (min_y + max_y) / 2
half_w = boundary_width_in / 2.0
half_l = boundary_length_in / 2.0
left = shape_cx - half_w
right = shape_cx + half_w
bottom = shape_cy - half_l
top = shape_cy + half_l
rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
from shapely.geometry import Polygon as ShapelyPolygon
boundary_polygon = ShapelyPolygon(rect_coords)
msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
return boundary_polygon
def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
for poly in polygons_inch:
if poly.geom_type == "MultiPolygon":
for subpoly in poly.geoms:
draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
else:
draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)
def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
ext = list(poly.exterior.coords)
if len(ext) < 3:
return
pts_px = []
for (x_in, y_in) in ext:
px = int(x_in / scaling_factor)
py = int(image_height - (y_in / scaling_factor))
pts_px.append([px, py])
pts_px = np.array(pts_px, dtype=np.int32)
cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)
# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
image: Union[str, bytes, np.ndarray],
offset_inches: float,
finger_clearance: str, # "Yes" or "No"
add_boundary: str, # "Yes" or "No"
boundary_length: float,
boundary_width: float,
boundary_unit: str,
annotation_text: str
):
overall_start = time.time()
# Convert image to NumPy array if needed.
if isinstance(image, str):
if os.path.exists(image):
image = np.array(Image.open(image).convert("RGB"))
else:
try:
image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
except Exception:
raise ValueError("Invalid base64 image data")
# Apply sharpness enhancement if image is a NumPy array.
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
enhanced_image = ImageEnhance.Sharpness(pil_image).enhance(1.5)
image = np.array(enhanced_image)
try:
t = time.time()
drawer_img = yolo_detect(image)
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
del drawer_img
gc.collect()
print("Image shrinking completed in {:.2f} seconds".format(time.time() - t))
except DrawerNotDetectedError:
raise DrawerNotDetectedError("Drawer not detected! Please take another picture with a drawer.")
try:
t = time.time()
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
print("Reference square detection completed in {:.2f} seconds".format(time.time() - t))
except ReferenceBoxNotDetectedError:
raise ReferenceBoxNotDetectedError("Reference box not detected! Please take another picture with a reference box.")
t = time.time()
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg_u2netp(reference_obj_img)
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
try:
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
scaling_factor = calculate_scaling_factor(
reference_image_path="./Reference_ScalingBox.jpg",
target_image=reference_square_mask,
feature_detector="ORB",
)
except ZeroDivisionError:
scaling_factor = None
print("Error calculating scaling factor: Division by zero")
except Exception as e:
scaling_factor = None
print(f"Error calculating scaling factor: {e}")
if scaling_factor is None or scaling_factor == 0:
scaling_factor = 1.0
print("Using default scaling factor of 1.0 due to calculation error")
gc.collect()
print("Scaling factor determined: {}".format(scaling_factor))
t = time.time()
orig_size = shrunked_img.shape[:2]
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
del scaling_box_coords
gc.collect()
print("Object masking completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
del objects_mask
gc.collect()
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
# Save the dilated mask for debugging if needed.
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
# --- Extract outlines (only used for DXF generation) ---
t = time.time()
outlines, contours = extract_outlines(dilated_mask)
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
# Instead of drawing the original contours, we now prepare a clean copy of the shrunk image for drawing new contours.
output_img = shrunked_img.copy()
del shrunked_img
gc.collect()
# --- Generate DXF using the extracted contours and apply finger clearance ---
t = time.time()
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
doc, final_polygons_inch = save_dxf_spline(contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance)
del contours
gc.collect()
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
boundary_polygon = None
if add_boundary.lower() == "yes":
boundary_polygon = add_rectangular_boundary(doc, final_polygons_inch, boundary_length, boundary_width, boundary_unit)
if boundary_polygon is not None:
final_polygons_inch.append(boundary_polygon)
# --- Annotation Text Placement (Centered horizontally) ---
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in final_polygons_inch:
b = poly.bounds
if b[0] < min_x:
min_x = b[0]
if b[1] < min_y:
min_y = b[1]
if b[2] > max_x:
max_x = b[2]
if b[3] > max_y:
max_y = b[3]
margin = 0.5
text_x = (min_x + max_x) / 2
text_y = min_y - margin
msp = doc.modelspace()
if annotation_text.strip():
text_entity = msp.add_text(
annotation_text.strip(),
dxfattribs={
"height": 0.25,
"layer": "ANNOTATION"
}
)
text_entity.dxf.insert = (text_x, text_y)
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
# --- Draw only the new contours (final_polygons_inch) on the clean output image ---
draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0,0,255), thickness=2)
# Also prepare an "Outlines" image based on a blank canvas for clarity.
new_outlines = np.ones_like(output_img) * 255
draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0,0,255), thickness=2)
if annotation_text.strip():
text_px = int(text_x / scaling_factor)
text_py = int(processed_size[0] - (text_y / scaling_factor))
cv2.putText(output_img, annotation_text.strip(), (text_px, text_py), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
cv2.putText(new_outlines, annotation_text.strip(), (text_px, text_py), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
return (
cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
outlines_color,
dxf_filepath,
dilated_mask,
str(scaling_factor)
)
# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
def gradio_predict(img, offset, finger_clearance, add_boundary, boundary_length, boundary_width, boundary_unit, annotation_text):
return predict(img, offset, finger_clearance, add_boundary, boundary_length, boundary_width, boundary_unit, annotation_text)
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(label="Input Image"),
gr.Number(label="Offset value for Mask (inches)", value=0.075),
gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="No"),
gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="No"),
gr.Number(label="Boundary Length", value=300.0, precision=2),
gr.Number(label="Boundary Width", value=200.0, precision=2),
gr.Dropdown(label="Boundary Unit", choices=["mm", "inches"], value="mm"),
gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
],
outputs=[
gr.Image(label="Output Image"),
gr.Image(label="Outlines of Objects"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(label="Scaling Factor (inches/pixel)")
],
examples=[
["./Test20.jpg", 0.075, "No", "No", 300.0, 200.0, "mm", "MyTool"],
["./Test21.jpg", 0.075, "Yes", "Yes", 300.0, 200.0, "mm", "Tool2"]
]
)
iface.launch(share=True)