File size: 4,445 Bytes
657e67e
 
 
 
7c0f80b
0414ba1
fe8cd4e
 
0414ba1
fe8cd4e
 
 
 
 
 
0414ba1
 
 
 
fe8cd4e
 
 
 
 
0414ba1
 
 
 
 
fe8cd4e
 
 
 
0414ba1
 
fe8cd4e
 
 
0414ba1
 
 
 
 
fe8cd4e
 
 
 
 
 
 
0414ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8cd4e
0414ba1
 
fe8cd4e
 
 
0414ba1
 
fe8cd4e
 
0414ba1
cb35992
0414ba1
 
 
fe8cd4e
 
0414ba1
 
fe8cd4e
 
 
 
 
0414ba1
fe8cd4e
 
 
 
0414ba1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"


import os
import tempfile
import numpy as np
import cv2
import gradio as gr
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing import image
from skimage.metrics import structural_similarity as ssim
from PIL import Image

# Disable GPU for TensorFlow
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

class ImageCharacterClassifier:
    def __init__(self, similarity_threshold=0.5):
        self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
        self.similarity_threshold = similarity_threshold

    def load_and_preprocess_image(self, img):
        # Convert image to array and preprocess it
        img = img.convert('RGB')
        img_array = np.array(img)
        img_array = cv2.resize(img_array, (224, 224))  # Ensure correct size
        img_array = np.expand_dims(img_array, axis=0)
        img_array = preprocess_input(img_array)
        return img_array

    def extract_features(self, img):
        preprocessed_img = self.load_and_preprocess_image(img)
        features = self.model.predict(preprocessed_img)
        return features

    def calculate_ssim(self, img1, img2):
        img1_gray = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
        img2_gray = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
        img2_gray = cv2.resize(img2_gray, (img1_gray.shape[1], img1_gray.shape[0]))
        return ssim(img1_gray, img2_gray)

def process_images(reference_image, comparison_images, similarity_threshold):
    try:
        if reference_image is None:
            return "Please upload a reference image.", []
        if not comparison_images:
            return "Please upload comparison images.", []

        classifier = ImageCharacterClassifier(similarity_threshold)

        # Convert reference image to NumPy array
        ref_image = Image.fromarray(reference_image)
        ref_features = classifier.extract_features(ref_image)

        results = []
        html_output = "<h3>Comparison Results:</h3>"

        for comp_image in comparison_images:
            try:
                # Read image file as PIL Image
                comp_pil = Image.open(comp_image)
                comp_pil = comp_pil.convert("RGB")

                # Convert to NumPy format for SSIM
                comp_array = np.array(comp_pil)

                # Calculate SSIM score
                ssim_score = classifier.calculate_ssim(reference_image, comp_array)

                # Extract features
                comp_features = classifier.extract_features(comp_pil)
                max_feature_diff = np.max(np.abs(ref_features - comp_features))
                is_similar = max_feature_diff < 6.0

                status_text = "SIMILAR" if is_similar else "NOT SIMILAR"
                status_color = "green" if is_similar else "red"

                html_output += f"<p style='color:{status_color};'>{comp_image.name}: {status_text}</p>"
                results.append(comp_array)

            except Exception as e:
                html_output += f"<p style='color:red;'>Error processing {comp_image.name}: {str(e)}</p>"

        return html_output, results

    except Exception as e:
        return f"<p style='color:red;'>Error: {str(e)}</p>", []

def create_interface():
    with gr.Blocks() as interface:
        gr.Markdown("# Image Similarity Classifier")
        gr.Markdown("Upload a reference image and multiple comparison images.")

        with gr.Row():
            with gr.Column():
                reference_input = gr.Image(label="Reference Image", type="numpy")
                comparison_input = gr.Files(label="Comparison Images", type="filepath")
                threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Similarity Threshold")
                submit_button = gr.Button("Compare Images")

            with gr.Column():
                output_html = gr.HTML(label="Results")
                output_gallery = gr.Gallery(label="Processed Images", columns=3)

        submit_button.click(
            fn=process_images,
            inputs=[reference_input, comparison_input, threshold_slider],
            outputs=[output_html, output_gallery]
        )

    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.launch(share=True)