Spaces:
Running
Running
import numpy as np | |
import cv2 | |
from tensorflow.keras.applications import ResNet50 | |
from tensorflow.keras.applications.resnet50 import preprocess_input | |
from tensorflow.keras.preprocessing import image | |
from skimage.metrics import structural_similarity as ssim | |
import os | |
import argparse | |
class ImageCharacterClassifier: | |
def __init__(self, similarity_threshold=0.7): | |
# Initialize ResNet50 model without top classification layer | |
self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg') | |
self.similarity_threshold = similarity_threshold | |
def load_and_preprocess_image(self, image_path, target_size=(224, 224)): | |
# Load and preprocess image for ResNet50 | |
img = image.load_img(image_path, target_size=target_size) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = preprocess_input(img_array) | |
return img_array | |
def extract_features(self, image_path): | |
# Extract deep features using ResNet50 | |
preprocessed_img = self.load_and_preprocess_image(image_path) | |
features = self.model.predict(preprocessed_img) | |
return features | |
def calculate_ssim(self, img1_path, img2_path): | |
# Calculate SSIM between two images | |
img1 = cv2.imread(img1_path) | |
img2 = cv2.imread(img2_path) | |
# Convert to grayscale if images are in color | |
if len(img1.shape) == 3: | |
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) | |
if len(img2.shape) == 3: | |
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) | |
# Resize images to same dimensions | |
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) | |
score = ssim(img1, img2) | |
return score | |
def classify_images(self, reference_image_path, image_folder_path): | |
# Extract features from reference image | |
reference_features = self.extract_features(reference_image_path) | |
results = [] | |
# Process each image in the folder | |
for image_name in os.listdir(image_folder_path): | |
if image_name.lower().endswith(('.png', '.jpg', '.jpeg')): | |
image_path = os.path.join(image_folder_path, image_name) | |
try: | |
# Calculate SSIM | |
ssim_score = self.calculate_ssim(reference_image_path, image_path) | |
# Extract features and calculate similarity | |
image_features = self.extract_features(image_path) | |
# Calculate cosine similarity | |
feature_similarity = np.dot(reference_features.flatten(), | |
image_features.flatten()) / ( | |
np.linalg.norm(reference_features) * np.linalg.norm(image_features)) | |
# Give more weight to feature similarity | |
combined_similarity = (0.3 * ssim_score + 0.7 * feature_similarity) | |
# Classify based on similarity threshold | |
is_similar = combined_similarity >= self.similarity_threshold | |
results.append({ | |
'image_name': image_name, | |
'ssim_score': ssim_score, | |
'feature_similarity': feature_similarity, | |
'combined_similarity': combined_similarity, | |
'is_similar': is_similar | |
}) | |
except Exception as e: | |
print(f"Error processing {image_name}: {str(e)}") | |
continue | |
return results | |
def main(): | |
# Create argument parser | |
parser = argparse.ArgumentParser(description='Image Character Classification') | |
parser.add_argument('--reference', '-r', | |
type=str, | |
required=True, | |
help='Path to reference image') | |
parser.add_argument('--folder', '-f', | |
type=str, | |
required=True, | |
help='Path to folder containing images to compare') | |
parser.add_argument('--threshold', '-t', | |
type=float, | |
default=0.5, # Lowered the default threshold | |
help='Similarity threshold (default: 0.5)') | |
# Parse arguments | |
args = parser.parse_args() | |
# Initialize classifier | |
classifier = ImageCharacterClassifier(similarity_threshold=args.threshold) | |
# Check if paths exist | |
if not os.path.exists(args.reference): | |
print(f"Error: Reference image not found at {args.reference}") | |
return | |
if not os.path.exists(args.folder): | |
print(f"Error: Image folder not found at {args.folder}") | |
return | |
# Perform classification | |
results = classifier.classify_images(args.reference, args.folder) | |
# Sort results by similarity score | |
results.sort(key=lambda x: x['combined_similarity'], reverse=True) | |
# Print results | |
print("\nResults sorted by similarity (highest to lowest):") | |
print("-" * 50) | |
for result in results: | |
print(f"\nImage: {result['image_name']}") | |
print(f"SSIM Score: {result['ssim_score']:.3f}") | |
print(f"Feature Similarity: {result['feature_similarity']:.3f}") | |
print(f"Combined Similarity: {result['combined_similarity']:.3f}") | |
print(f"Is Similar: {result['is_similar']}") | |
print("-" * 30) | |
if __name__ == "__main__": | |
main() |