fatima02 commited on
Commit
0f10828
·
verified ·
1 Parent(s): 09a6246

Upload image_classifier.py

Browse files
Files changed (1) hide show
  1. image_classifier.py +139 -0
image_classifier.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ from tensorflow.keras.applications import ResNet50
4
+ from tensorflow.keras.applications.resnet50 import preprocess_input
5
+ from tensorflow.keras.preprocessing import image
6
+ from skimage.metrics import structural_similarity as ssim
7
+ import os
8
+ import argparse
9
+
10
+ class ImageCharacterClassifier:
11
+ def __init__(self, similarity_threshold=0.7):
12
+ # Initialize ResNet50 model without top classification layer
13
+ self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
14
+ self.similarity_threshold = similarity_threshold
15
+
16
+ def load_and_preprocess_image(self, image_path, target_size=(224, 224)):
17
+ # Load and preprocess image for ResNet50
18
+ img = image.load_img(image_path, target_size=target_size)
19
+ img_array = image.img_to_array(img)
20
+ img_array = np.expand_dims(img_array, axis=0)
21
+ img_array = preprocess_input(img_array)
22
+ return img_array
23
+
24
+ def extract_features(self, image_path):
25
+ # Extract deep features using ResNet50
26
+ preprocessed_img = self.load_and_preprocess_image(image_path)
27
+ features = self.model.predict(preprocessed_img)
28
+ return features
29
+
30
+ def calculate_ssim(self, img1_path, img2_path):
31
+ # Calculate SSIM between two images
32
+ img1 = cv2.imread(img1_path)
33
+ img2 = cv2.imread(img2_path)
34
+
35
+ # Convert to grayscale if images are in color
36
+ if len(img1.shape) == 3:
37
+ img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
38
+ if len(img2.shape) == 3:
39
+ img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
40
+
41
+ # Resize images to same dimensions
42
+ img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
43
+
44
+ score = ssim(img1, img2)
45
+ return score
46
+
47
+ def classify_images(self, reference_image_path, image_folder_path):
48
+ # Extract features from reference image
49
+ reference_features = self.extract_features(reference_image_path)
50
+
51
+ results = []
52
+
53
+ # Process each image in the folder
54
+ for image_name in os.listdir(image_folder_path):
55
+ if image_name.lower().endswith(('.png', '.jpg', '.jpeg')):
56
+ image_path = os.path.join(image_folder_path, image_name)
57
+
58
+ try:
59
+ # Calculate SSIM
60
+ ssim_score = self.calculate_ssim(reference_image_path, image_path)
61
+
62
+ # Extract features and calculate similarity
63
+ image_features = self.extract_features(image_path)
64
+
65
+ # Calculate cosine similarity
66
+ feature_similarity = np.dot(reference_features.flatten(),
67
+ image_features.flatten()) / (
68
+ np.linalg.norm(reference_features) * np.linalg.norm(image_features))
69
+
70
+ # Give more weight to feature similarity
71
+ combined_similarity = (0.3 * ssim_score + 0.7 * feature_similarity)
72
+
73
+ # Classify based on similarity threshold
74
+ is_similar = combined_similarity >= self.similarity_threshold
75
+
76
+ results.append({
77
+ 'image_name': image_name,
78
+ 'ssim_score': ssim_score,
79
+ 'feature_similarity': feature_similarity,
80
+ 'combined_similarity': combined_similarity,
81
+ 'is_similar': is_similar
82
+ })
83
+
84
+ except Exception as e:
85
+ print(f"Error processing {image_name}: {str(e)}")
86
+ continue
87
+
88
+ return results
89
+
90
+ def main():
91
+ # Create argument parser
92
+ parser = argparse.ArgumentParser(description='Image Character Classification')
93
+ parser.add_argument('--reference', '-r',
94
+ type=str,
95
+ required=True,
96
+ help='Path to reference image')
97
+ parser.add_argument('--folder', '-f',
98
+ type=str,
99
+ required=True,
100
+ help='Path to folder containing images to compare')
101
+ parser.add_argument('--threshold', '-t',
102
+ type=float,
103
+ default=0.5, # Lowered the default threshold
104
+ help='Similarity threshold (default: 0.5)')
105
+
106
+ # Parse arguments
107
+ args = parser.parse_args()
108
+
109
+ # Initialize classifier
110
+ classifier = ImageCharacterClassifier(similarity_threshold=args.threshold)
111
+
112
+ # Check if paths exist
113
+ if not os.path.exists(args.reference):
114
+ print(f"Error: Reference image not found at {args.reference}")
115
+ return
116
+
117
+ if not os.path.exists(args.folder):
118
+ print(f"Error: Image folder not found at {args.folder}")
119
+ return
120
+
121
+ # Perform classification
122
+ results = classifier.classify_images(args.reference, args.folder)
123
+
124
+ # Sort results by similarity score
125
+ results.sort(key=lambda x: x['combined_similarity'], reverse=True)
126
+
127
+ # Print results
128
+ print("\nResults sorted by similarity (highest to lowest):")
129
+ print("-" * 50)
130
+ for result in results:
131
+ print(f"\nImage: {result['image_name']}")
132
+ print(f"SSIM Score: {result['ssim_score']:.3f}")
133
+ print(f"Feature Similarity: {result['feature_similarity']:.3f}")
134
+ print(f"Combined Similarity: {result['combined_similarity']:.3f}")
135
+ print(f"Is Similar: {result['is_similar']}")
136
+ print("-" * 30)
137
+
138
+ if __name__ == "__main__":
139
+ main()