Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import json
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
-
|
7 |
|
8 |
# ---------------- Helper functions ----------------
|
9 |
def get_rotated_rect_corners(x, y, w, h, rotation_deg):
|
@@ -36,48 +36,33 @@ def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78):
|
|
36 |
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
|
37 |
return kp1, kp2, good
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
tree = etree.parse(xml_path)
|
42 |
root = tree.getroot()
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
y = float(pt.attrib['y'])
|
49 |
-
points[pt_type] = (x,y)
|
50 |
-
return points
|
51 |
-
|
52 |
-
def draw_polygon_on_image(img, points_dict):
|
53 |
-
ordered_points = ['TopLeft','TopRight','BottomRight','BottomLeft']
|
54 |
-
polygon = [points_dict[pt] for pt in ordered_points]
|
55 |
-
pts = np.array(polygon, np.int32).reshape((-1,1,2))
|
56 |
-
img_copy = img.copy()
|
57 |
-
cv2.polylines(img_copy, [pts], isClosed=True, color=(0,0,255), thickness=3)
|
58 |
-
for px, py in polygon:
|
59 |
-
cv2.circle(img_copy, (int(px),int(py)), 5, (255,0,0), -1)
|
60 |
-
return img_copy
|
61 |
|
62 |
# ---------------- Padding Helper ----------------
|
63 |
def pad_to_size(img, target_h, target_w):
|
64 |
h, w = img.shape[:2]
|
|
|
|
|
|
|
|
|
65 |
canvas = np.ones((target_h, target_w,3), dtype=np.uint8)*255
|
66 |
-
canvas[:h
|
67 |
return canvas
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
canvas = np.ones((ref_h, ref_w,3), dtype=np.uint8)*255
|
77 |
-
canvas[:new_h,:new_w] = resized
|
78 |
-
return canvas
|
79 |
-
else:
|
80 |
-
return resized
|
81 |
|
82 |
# ---------------- Main Function ----------------
|
83 |
def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
|
@@ -91,7 +76,7 @@ def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
|
|
91 |
|
92 |
flat_gray = preprocess_gray_clahe(flat_img)
|
93 |
persp_gray = preprocess_gray_clahe(persp_img)
|
94 |
-
|
95 |
|
96 |
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
|
97 |
gallery_paths = []
|
@@ -103,42 +88,44 @@ def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
|
|
103 |
|
104 |
match_img = cv2.drawMatches(flat_img,kp1,persp_img,kp2,good_matches,None,flags=2)
|
105 |
|
106 |
-
# ROI on perspective image
|
107 |
-
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
|
108 |
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
|
109 |
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
|
110 |
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
|
|
|
|
|
|
|
|
|
|
|
111 |
persp_roi = persp_img.copy()
|
112 |
-
|
113 |
-
|
114 |
-
cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),2)
|
115 |
-
for px,py in roi_corners_persp: cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),-1)
|
116 |
|
117 |
-
# XML GT overlay
|
118 |
-
xml_gt_img =
|
|
|
119 |
|
120 |
# Convert to RGB
|
121 |
flat_rgb = cv2.cvtColor(flat_img,cv2.COLOR_BGR2RGB)
|
122 |
-
match_rgb =
|
123 |
-
flat_rgb.shape[0], flat_rgb.shape[1])
|
124 |
roi_rgb = cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB)
|
125 |
xml_rgb = cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB)
|
126 |
|
127 |
-
# Determine max height and width
|
128 |
max_h = max(flat_rgb.shape[0], match_rgb.shape[0], roi_rgb.shape[0], xml_rgb.shape[0])
|
129 |
max_w = max(flat_rgb.shape[1], match_rgb.shape[1], roi_rgb.shape[1], xml_rgb.shape[1])
|
130 |
|
131 |
-
# Pad images
|
132 |
flat_pad = pad_to_size(flat_rgb, max_h, max_w)
|
133 |
match_pad = pad_to_size(match_rgb, max_h, max_w)
|
134 |
roi_pad = pad_to_size(roi_rgb, max_h, max_w)
|
135 |
xml_pad = pad_to_size(xml_rgb, max_h, max_w)
|
136 |
|
137 |
-
# 2x2 grid
|
138 |
top = np.hstack([flat_pad, match_pad])
|
139 |
bottom = np.hstack([roi_pad, xml_pad])
|
140 |
combined_grid = np.vstack([top, bottom])
|
141 |
|
|
|
142 |
base_name = os.path.splitext(os.path.basename(persp_file))[0]
|
143 |
file_name = f"{base_name}_{method.lower()}.png"
|
144 |
cv2.imwrite(file_name, cv2.cvtColor(combined_grid,cv2.COLOR_RGB2BGR))
|
@@ -166,7 +153,7 @@ iface = gr.Interface(
|
|
166 |
gr.File(label="Download AKAZE Result")
|
167 |
],
|
168 |
title="Homography ROI Projection with Feature Matching & XML GT",
|
169 |
-
description="Flat + Perspective images with mockup.json & XML.
|
170 |
)
|
171 |
|
172 |
iface.launch()
|
|
|
3 |
import json
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
+
import xml.etree.ElementTree as ET
|
7 |
|
8 |
# ---------------- Helper functions ----------------
|
9 |
def get_rotated_rect_corners(x, y, w, h, rotation_deg):
|
|
|
36 |
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
|
37 |
return kp1, kp2, good
|
38 |
|
39 |
+
def parse_xml_points(xml_file):
|
40 |
+
tree = ET.parse(xml_file)
|
|
|
41 |
root = tree.getroot()
|
42 |
+
points=[]
|
43 |
+
for pt_type in ["TopLeft","TopRight","BottomLeft","BottomRight"]:
|
44 |
+
elem=root.find(f".//point[@type='{pt_type}']")
|
45 |
+
points.append([float(elem.get("x")), float(elem.get("y"))])
|
46 |
+
return np.array(points,dtype=np.float32).reshape(-1,2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# ---------------- Padding Helper ----------------
|
49 |
def pad_to_size(img, target_h, target_w):
|
50 |
h, w = img.shape[:2]
|
51 |
+
top_pad = 0
|
52 |
+
left_pad = 0
|
53 |
+
bottom_pad = target_h - h
|
54 |
+
right_pad = target_w - w
|
55 |
canvas = np.ones((target_h, target_w,3), dtype=np.uint8)*255
|
56 |
+
canvas[top_pad:top_pad+h, left_pad:left_pad+w] = img
|
57 |
return canvas
|
58 |
|
59 |
+
# ---------------- Draw XML Ground-Truth ----------------
|
60 |
+
def draw_xml_gt(img, xml_points):
|
61 |
+
for px,py in xml_points:
|
62 |
+
cv2.circle(img,(int(px),int(py)),5,(0,0,255),-1)
|
63 |
+
# Draw polygon
|
64 |
+
cv2.polylines(img,[xml_points.astype(np.int32)],True,(255,0,0),2)
|
65 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# ---------------- Main Function ----------------
|
68 |
def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
|
|
|
76 |
|
77 |
flat_gray = preprocess_gray_clahe(flat_img)
|
78 |
persp_gray = preprocess_gray_clahe(persp_img)
|
79 |
+
xml_points = parse_xml_points(xml_file.name)
|
80 |
|
81 |
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
|
82 |
gallery_paths = []
|
|
|
88 |
|
89 |
match_img = cv2.drawMatches(flat_img,kp1,persp_img,kp2,good_matches,None,flags=2)
|
90 |
|
|
|
|
|
91 |
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
|
92 |
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
|
93 |
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
|
94 |
+
if H is None: continue
|
95 |
+
|
96 |
+
# ROI homography projection
|
97 |
+
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
|
98 |
+
roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
|
99 |
persp_roi = persp_img.copy()
|
100 |
+
cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),2)
|
101 |
+
for px,py in roi_corners_persp: cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),-1)
|
|
|
|
|
102 |
|
103 |
+
# XML GT overlay
|
104 |
+
xml_gt_img = persp_img.copy()
|
105 |
+
xml_gt_img = draw_xml_gt(xml_gt_img, xml_points)
|
106 |
|
107 |
# Convert to RGB
|
108 |
flat_rgb = cv2.cvtColor(flat_img,cv2.COLOR_BGR2RGB)
|
109 |
+
match_rgb = cv2.cvtColor(match_img,cv2.COLOR_BGR2RGB)
|
|
|
110 |
roi_rgb = cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB)
|
111 |
xml_rgb = cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB)
|
112 |
|
113 |
+
# Determine max height and width for padding
|
114 |
max_h = max(flat_rgb.shape[0], match_rgb.shape[0], roi_rgb.shape[0], xml_rgb.shape[0])
|
115 |
max_w = max(flat_rgb.shape[1], match_rgb.shape[1], roi_rgb.shape[1], xml_rgb.shape[1])
|
116 |
|
117 |
+
# Pad all images to same size
|
118 |
flat_pad = pad_to_size(flat_rgb, max_h, max_w)
|
119 |
match_pad = pad_to_size(match_rgb, max_h, max_w)
|
120 |
roi_pad = pad_to_size(roi_rgb, max_h, max_w)
|
121 |
xml_pad = pad_to_size(xml_rgb, max_h, max_w)
|
122 |
|
123 |
+
# Merge 2x2 grid
|
124 |
top = np.hstack([flat_pad, match_pad])
|
125 |
bottom = np.hstack([roi_pad, xml_pad])
|
126 |
combined_grid = np.vstack([top, bottom])
|
127 |
|
128 |
+
# Save combined grid
|
129 |
base_name = os.path.splitext(os.path.basename(persp_file))[0]
|
130 |
file_name = f"{base_name}_{method.lower()}.png"
|
131 |
cv2.imwrite(file_name, cv2.cvtColor(combined_grid,cv2.COLOR_RGB2BGR))
|
|
|
153 |
gr.File(label="Download AKAZE Result")
|
154 |
],
|
155 |
title="Homography ROI Projection with Feature Matching & XML GT",
|
156 |
+
description="Flat + Perspective images with mockup.json & XML. Original resolution maintained. Grid aligned with white padding. XML GT overlaid."
|
157 |
)
|
158 |
|
159 |
iface.launch()
|