Ayesha352 commited on
Commit
74de087
·
verified ·
1 Parent(s): 399ad34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -0
app.py CHANGED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import json
4
+ import gradio as gr
5
+ import os
6
+ import xml.etree.ElementTree as ET
7
+
8
+ # ---------------- Helper functions ----------------
9
+ def get_rotated_rect_corners(x, y, w, h, rotation_deg):
10
+ rot_rad = np.deg2rad(rotation_deg)
11
+ cos_r, sin_r = np.cos(rot_rad), np.sin(rot_rad)
12
+ R = np.array([[cos_r, -sin_r], [sin_r, cos_r]])
13
+ cx, cy = x + w/2, y + h/2
14
+ local_corners = np.array([[-w/2,-h/2],[w/2,-h/2],[w/2,h/2],[-w/2,h/2]])
15
+ rotated_corners = np.dot(local_corners, R.T)
16
+ return (rotated_corners + np.array([cx,cy])).astype(np.float32)
17
+
18
+ def preprocess_gray_clahe(img):
19
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
20
+ clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
21
+ return clahe.apply(gray)
22
+
23
+ def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78):
24
+ if method=="SIFT": detector=cv2.SIFT_create(nfeatures=5000); matcher=cv2.BFMatcher(cv2.NORM_L2)
25
+ elif method=="ORB": detector=cv2.ORB_create(5000); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
26
+ elif method=="BRISK": detector=cv2.BRISK_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
27
+ elif method=="KAZE": detector=cv2.KAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_L2)
28
+ elif method=="AKAZE": detector=cv2.AKAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
29
+ else: return None,None,[]
30
+
31
+ kp1, des1 = detector.detectAndCompute(img1_gray,None)
32
+ kp2, des2 = detector.detectAndCompute(img2_gray,None)
33
+ if des1 is None or des2 is None: return None,None,[]
34
+
35
+ raw_matches = matcher.knnMatch(des1,des2,k=2)
36
+ good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
37
+ return kp1, kp2, good
38
+
39
+ def parse_xml_points(xml_file):
40
+ tree = ET.parse(xml_file)
41
+ root = tree.getroot()
42
+ points=[]
43
+ for pt_type in ["TopLeft","TopRight","BottomLeft","BottomRight"]:
44
+ elem=root.find(f".//point[@type='{pt_type}']")
45
+ points.append([float(elem.get("x")), float(elem.get("y"))])
46
+ return np.array(points,dtype=np.float32).reshape(-1,2)
47
+
48
+ # ---------------- Padding Helper ----------------
49
+ def pad_to_size(img, target_h, target_w):
50
+ h, w = img.shape[:2]
51
+ top_pad = 0
52
+ left_pad = 0
53
+ bottom_pad = target_h - h
54
+ right_pad = target_w - w
55
+ canvas = np.ones((target_h, target_w,3), dtype=np.uint8)*255
56
+ canvas[top_pad:top_pad+h, left_pad:left_pad+w] = img
57
+ return canvas
58
+
59
+ # ---------------- Resize feature-match to original reference size ----------------
60
+ def match_img_to_reference(match_img, ref_h, ref_w):
61
+ h, w = match_img.shape[:2]
62
+ scale = min(ref_w/w, ref_h/h)
63
+ new_w, new_h = int(w*scale), int(h*scale)
64
+ resized = cv2.resize(match_img, (new_w,new_h))
65
+ padded = pad_to_size(resized, ref_h, ref_w)
66
+ return padded
67
+
68
+ # ---------------- Main Function ----------------
69
+ def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
70
+ flat_img = cv2.imread(flat_file)
71
+ persp_img = cv2.imread(persp_file)
72
+ mockup = json.load(open(json_file.name))
73
+ roi_data = mockup["printAreas"][0]["position"]
74
+ roi_x, roi_y = roi_data["x"], roi_data["y"]
75
+ roi_w, roi_h = mockup["printAreas"][0]["width"], mockup["printAreas"][0]["height"]
76
+ roi_rot_deg = mockup["printAreas"][0]["rotation"]
77
+
78
+ flat_gray = preprocess_gray_clahe(flat_img)
79
+ persp_gray = preprocess_gray_clahe(persp_img)
80
+ xml_points = parse_xml_points(xml_file.name)
81
+
82
+ methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
83
+ gallery_paths = []
84
+ download_files = []
85
+
86
+ for method in methods:
87
+ kp1,kp2,good_matches = detect_and_match(flat_gray,persp_gray,method)
88
+ if kp1 is None or kp2 is None or len(good_matches)<4: continue
89
+
90
+ match_img = cv2.drawMatches(flat_img,kp1,persp_img,kp2,good_matches,None,flags=2)
91
+
92
+ src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
93
+ dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
94
+ H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
95
+ if H is None: continue
96
+
97
+ roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
98
+ roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
99
+ persp_roi = persp_img.copy()
100
+ cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),2)
101
+ for px,py in roi_corners_persp: cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),-1)
102
+
103
+ xml_gt_img = persp_img.copy()
104
+ xml_mapped = cv2.perspectiveTransform(xml_points.reshape(-1,1,2),H).reshape(-1,2)
105
+ for px,py in xml_mapped: cv2.circle(xml_gt_img,(int(px),int(py)),5,(0,0,255),-1)
106
+
107
+ # Convert to RGB
108
+ flat_rgb = cv2.cvtColor(flat_img,cv2.COLOR_BGR2RGB)
109
+ persp_rgb = cv2.cvtColor(persp_img,cv2.COLOR_BGR2RGB)
110
+ roi_rgb = cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB)
111
+ xml_rgb = cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB)
112
+
113
+ # Resize feature-match image to match original flat/perspective
114
+ match_rgb = match_img_to_reference(cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB), flat_rgb.shape[0], flat_rgb.shape[1])
115
+
116
+ # Determine max height and width for grid (all images now same)
117
+ max_h = max(flat_rgb.shape[0], match_rgb.shape[0], roi_rgb.shape[0], xml_rgb.shape[0])
118
+ max_w = max(flat_rgb.shape[1], match_rgb.shape[1], roi_rgb.shape[1], xml_rgb.shape[1])
119
+
120
+ flat_pad = pad_to_size(flat_rgb, max_h, max_w)
121
+ roi_pad = pad_to_size(roi_rgb, max_h, max_w)
122
+ xml_pad = pad_to_size(xml_rgb, max_h, max_w)
123
+
124
+ # Merge 2x2 grid
125
+ top = np.hstack([flat_pad, match_rgb])
126
+ bottom = np.hstack([roi_pad, xml_pad])
127
+ combined_grid = np.vstack([top, bottom])
128
+
129
+ base_name = os.path.splitext(os.path.basename(persp_file))[0]
130
+ file_name = f"{base_name}_{method.lower()}.png"
131
+ cv2.imwrite(file_name, cv2.cvtColor(combined_grid,cv2.COLOR_RGB2BGR))
132
+ gallery_paths.append(file_name)
133
+ download_files.append(file_name)
134
+
135
+ while len(download_files)<5: download_files.append(None)
136
+ return gallery_paths, download_files[0], download_files[1], download_files[2], download_files[3], download_files[4]
137
+
138
+ iface = gr.Interface(
139
+ fn=homography_all_detectors,
140
+ inputs=[
141
+ gr.Image(label="Upload Flat Image",type="filepath"),
142
+ gr.Image(label="Upload Perspective Image",type="filepath"),
143
+ gr.File(label="Upload mockup.json",file_types=[".json"]),
144
+ gr.File(label="Upload XML file",file_types=[".xml"])
145
+ ],
146
+ outputs=[
147
+ gr.Gallery(label="Results per Detector",show_label=True),
148
+ gr.File(label="Download SIFT Result"),
149
+ gr.File(label="Download ORB Result"),
150
+ gr.File(label="Download BRISK Result"),
151
+ gr.File(label="Download KAZE Result"),
152
+ gr.File(label="Download AKAZE Result")
153
+ ],
154
+ title="Homography ROI Projection with Feature Matching & XML GT",
155
+ description="Flat + Perspective images with mockup.json & XML. Feature-match aligned with original images using white padding."
156
+ )
157
+
158
+ iface.launch()