Spaces:
Running
Running
File size: 9,441 Bytes
2c880eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
from pathlib import Path
from typing import List, Union
from PIL import Image
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
from scalingtestupdated import calculate_scaling_factor
def yolo_detect(
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
classes: List[str],
) -> np.ndarray:
drawer_detector = YOLOWorld("yolov8x-worldv2.pt")
drawer_detector.set_classes(classes)
results: List[Results] = drawer_detector.predict(image)
boxes = []
for result in results:
boxes.append(
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False)
)
del drawer_detector
return boxes[0]
def remove_bg(image: np.ndarray) -> np.ndarray:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True
)
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet.to(device)
birefnet.eval()
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image = Image.fromarray(image)
input_images = transform_image(image).unsqueeze(0).to("cpu")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Show Results
pred_pil = transforms.ToPILImage()(pred)
# Scale proportionally with max length to 1024 for faster showing
scale_ratio = 1024 / max(image.size)
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
del birefnet
return np.array(pred_pil.resize(scaled_size))
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.5) -> np.ndarray:
# Unpack the bounding box
x_min, y_min, x_max, y_max = map(int, bbox)
# Calculate scaling factors
scale_x = processed_size[1] / orig_size[1] # Width scale
scale_y = processed_size[0] / orig_size[0] # Height scale
# Adjust bounding box coordinates
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
# Calculate expanded box coordinates
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
# Black out the expanded region
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
"""
Extracts and draws the outlines of masks from a binary image.
Args:
binary_image: Grayscale binary image where white represents masks and black is the background.
Returns:
Image with outlines drawn.
"""
# Detect contours from the binary image
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
# Create a blank image to draw contours
outline_image = np.zeros_like(binary_image)
# Smooth the contours
smoothed_contours = []
for contour in contours:
# Calculate epsilon for approxPolyDP
epsilon = 0.002 * cv2.arcLength(contour, True)
# Approximate the contour with fewer points
smoothed_contour = cv2.approxPolyDP(contour, epsilon, True)
smoothed_contours.append(smoothed_contour)
# Draw the contours on the blank image
cv2.drawContours(
outline_image, smoothed_contours, -1, (255), thickness=1
) # White color for outlines
return cv2.bitwise_not(outline_image), smoothed_contours
def shrink_bbox(image: np.ndarray, shrink_factor: float):
"""
Crops the central 80% of the image, maintaining proportions for non-square images.
Args:
image: Input image as a NumPy array.
Returns:
Cropped image as a NumPy array.
"""
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
# Calculate 80% dimensions
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
# Determine the top-left and bottom-right points for cropping
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
# Crop the image
cropped_image = image[y1:y2, x1:x2]
return cropped_image
# def to_dxf(outlines):
# upper_range_tuple = (200)
# lower_range_tuple = (0)
# doc = ezdxf.new('R2010')
# msp = doc.modelspace()
# masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple)
# for i in range(0,masked_jpg.shape[0]):
# for j in range(0,masked_jpg.shape[1]):
# if masked_jpg[i][j] == 255:
# msp.add_line((j,masked_jpg.shape[0] - i), (j,masked_jpg.shape[0] - i))
# doc.saveas("./outputs/out.dxf")
# return "./outputs/out.dxf"
def to_dxf(contours):
doc = ezdxf.new()
msp = doc.modelspace()
for contour in contours:
points = [(point[0][0], point[0][1]) for point in contour]
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
doc.saveas("./outputs/out.dxf")
return "./outputs/out.dxf"
def smooth_contours(contour):
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
return cv2.approxPolyDP(contour, epsilon, True)
def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
"""
Resize image by scaling both width and height by the same factor.
Args:
image: Input numpy image
scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
Returns:
np.ndarray: Resized image
"""
if scale_factor <= 0:
raise ValueError("Scale factor must be positive")
current_height, current_width = image.shape[:2]
# Calculate new dimensions
new_width = int(current_width * scale_factor)
new_height = int(current_height * scale_factor)
# Choose interpolation method based on whether we're scaling up or down
interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
# Resize image
resized_image = cv2.resize(
image, (new_width, new_height), interpolation=interpolation
)
return resized_image
def detect_reference_square(img) -> np.ndarray:
box_detector = YOLO("./last.pt")
res = box_detector.predict(img)
del box_detector
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[0].cpu().boxes.xyxy[0
]
def predict(image):
drawer_img = yolo_detect(image, ["box"])
shrunked_img = shrink_bbox(drawer_img, 0.8)
# Detect the scaling reference square
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
try:
scaling_factor = calculate_scaling_factor(
reference_image_path="./Reference_ScalingBox.jpg",
target_image=reference_obj_img_scaled,
feature_detector="SIFT",
)
except:
scaling_factor = 1.0
# Save original size before `remove_bg` processing
orig_size = shrunked_img.shape[:2]
# Generate foreground mask and save its size
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
# Exclude scaling box region from objects mask
objects_mask = exclude_scaling_box(
objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=3.0
)
# Scale the object mask according to scaling factor
# objects_mask_scaled = scale_image(objects_mask, scaling_factor)
Image.fromarray(objects_mask).save("./outputs/scaled_mask_new.jpg")
outlines, contours = extract_outlines(objects_mask)
dxf = to_dxf(contours)
return outlines, dxf, objects_mask, scaling_factor, reference_obj_img_scaled
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
ifer = gr.Interface(
fn=predict,
inputs=[gr.Image(label="Input Image")],
outputs=[
gr.Image(label="Ouput Image"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(label="Scaling Factor(mm)", placeholder="Every pixel is equal to mentioned number in mm(milimeter)"),
gr.Image(label="Image used for calculating scaling factor")
],
examples=["./examples/Test20.jpg", "./examples/Test21.jpg", "./examples/Test22.jpg", "./examples/Test23.jpg"]
)
ifer.launch(share=True)
|