Bisect_iitm_submission_2 / src /data /pinder_datamodule.py
Sukanyaaa's picture
Upload 36 files
b38c7b5 verified
import os
from typing import Any, Dict, Optional
import pandas as pd
import rootutils
from lightning import LightningDataModule
from torch_geometric.data import Dataset
from torch_geometric.loader import DataLoader
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
from src.data.components.pinder_dataset import PinderDataset
class PINDERDataModule(LightningDataModule):
"""`LightningDataModule` for the PINDER dataset."""
def __init__(
self,
data_dir: str = "data/processed",
predicted_structures: bool = False,
high_quality: bool = False,
batch_size: int = 1,
num_workers: int = 0,
pin_memory: bool = True,
) -> None:
"""Initialize the `PINDERDataModule`.
Args:
data_dir: Data for pinder. Defaults to "data/processed".
predicted_structures: Whether to use predicted structures. Defaults to True.
batch_size: Batch size. Defaults to 64.
num_workers: Number of workers for parallel processing. Defaults to 0.
pin_memory: Whether to pin memory. Defaults to True.
"""
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
# get metadata
metadata = pd.read_csv(os.path.join(self.hparams.data_dir, "metadata.csv"))
def get_files(split: str, complex_types: list) -> list:
file_df = metadata[
(metadata["split"] == split) & (metadata["complex"].isin(complex_types))
]
file_df["file_paths"] = file_df.apply(
lambda row: os.path.join(
"./data/processed", row["complex"], row["split"], row["file_paths"]
),
axis=1,
)
return file_df["file_paths"].tolist()
complex_types = ["apo", "predicted"] if self.hparams.predicted_structures else ["apo"]
self.train_files = get_files("train", complex_types)
self.val_files = get_files("val", complex_types)
self.test_files = get_files("test", complex_types)
self.data_train: Optional[Dataset] = None
self.data_val: Optional[Dataset] = None
self.data_test: Optional[Dataset] = None
self.batch_size_per_device = batch_size
def setup(self, stage: Optional[str] = None) -> None:
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and
`trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after
`self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to
`self.setup()` once the data is prepared and available for use.
:param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``.
"""
# Divide batch size by the number of devices.
if self.trainer is not None:
if self.hparams.batch_size % self.trainer.world_size != 0:
raise RuntimeError(
f"Batch size ({self.hparams.batch_size}) is not divisible by the number of devices ({self.trainer.world_size})."
)
self.batch_size_per_device = self.hparams.batch_size // self.trainer.world_size
# load and split datasets only if not loaded already
if not self.data_train and not self.data_val and not self.data_test:
self.data_train = PinderDataset(self.train_files)
self.data_val = PinderDataset(self.val_files)
self.data_test = PinderDataset(self.test_files)
def train_dataloader(self) -> DataLoader:
"""Create and return the train dataloader.
:return: The train dataloader.
"""
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=True,
drop_last=True,
)
def val_dataloader(self) -> DataLoader:
"""Create and return the validation dataloader.
:return: The validation dataloader.
"""
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def test_dataloader(self) -> DataLoader:
"""Create and return the test dataloader.
:return: The test dataloader.
"""
return DataLoader(
dataset=self.data_test,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def teardown(self, stage: Optional[str] = None) -> None:
"""Lightning hook for cleaning up after `trainer.fit()`, `trainer.validate()`,
`trainer.test()`, and `trainer.predict()`.
:param stage: The stage being torn down. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.
Defaults to ``None``.
"""
pass
def state_dict(self) -> Dict[Any, Any]:
"""Called when saving a checkpoint. Implement to generate and save the datamodule state.
:return: A dictionary containing the datamodule state that you want to save.
"""
return {}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
"""Called when loading a checkpoint. Implement to reload datamodule state given datamodule
`state_dict()`.
:param state_dict: The datamodule state returned by `self.state_dict()`.
"""
pass
if __name__ == "__main__":
datamodule = PINDERDataModule()
datamodule.setup()
# print(datamodule.train_files[64])
train_loader = datamodule.train_dataloader()
val_loader = datamodule.val_dataloader()
test_loader = datamodule.test_dataloader()
print(f"Number of training batches: {len(train_loader)}")
print(f"Number of validation batches: {len(val_loader)}")
print(f"Number of test batches: {len(test_loader)}")
print(next(iter(train_loader)))