Spaces:
Sleeping
Sleeping
File size: 2,073 Bytes
bebad14 dffaf30 bebad14 28cb117 bebad14 28cb117 bebad14 f624b87 bebad14 28cb117 bebad14 44470f9 28cb117 bebad14 dffaf30 bebad14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import time
import gradio as gr
from gradio_molecule3d import Molecule3D
def predict (input_sequence, input_ligand):
start_time = time.time()
# Do inference here
# return an output directory
end_time = time.time()
run_time = end_time - start_time
return "test_out.pdb", run_time
with gr.Blocks() as app:
gr.Markdown("# Template for inference")
gr.Markdown("Title, description, and other information about the model")
with gr.Row():
input_sequence = gr.Textbox(lines=3, label="Input sequence")
input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL:SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL"
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
],
],
[input_sequence, input_ligand],
)
reps = [
{
"model": 0,
"chain": "",
"resname": "",
"style": "cartoon",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False,
"visible": False
},
{
"model": 1,
"chain": "",
"resname": "",
"style": "stick",
"color": "greenCarbon",
"residue_range": "",
"around": 0,
"byres": False,
"visible": False
}
]
out = Molecule3D(reps=reps)
run_time = gr.Textbox(label="Runtime")
btn.click(predict, inputs=[input_sequence, input_ligand], outputs=[out, run_time])
app.launch()
|