Spaces:
Sleeping
Sleeping
# Copyright 2021 AlQuraishi Laboratory | |
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from typing import Optional, List, Tuple | |
from dockformerpp.model.primitives import ( | |
Linear, | |
LayerNorm, | |
Attention, | |
) | |
from dockformerpp.utils.tensor_utils import permute_final_dims | |
class SingleAttention(nn.Module): | |
def __init__( | |
self, | |
c_in, | |
c_hidden, | |
no_heads, | |
pair_bias=False, | |
c_z=None, | |
inf=1e9, | |
): | |
""" | |
Args: | |
c_in: | |
Input channel dimension | |
c_hidden: | |
Per-head hidden channel dimension | |
no_heads: | |
Number of attention heads | |
pair_bias: | |
Whether to use pair embedding bias | |
c_z: | |
Pair embedding channel dimension. Ignored unless pair_bias | |
is true | |
inf: | |
A large number to be used in computing the attention mask | |
""" | |
super(SingleAttention, self).__init__() | |
self.c_in = c_in | |
self.c_hidden = c_hidden | |
self.no_heads = no_heads | |
self.pair_bias = pair_bias | |
self.c_z = c_z | |
self.inf = inf | |
self.layer_norm_m = LayerNorm(self.c_in) | |
self.layer_norm_z = None | |
self.linear_z = None | |
if self.pair_bias: | |
self.layer_norm_z = LayerNorm(self.c_z) | |
self.linear_z = Linear( | |
self.c_z, self.no_heads, bias=False, init="normal" | |
) | |
self.mha = Attention( | |
self.c_in, | |
self.c_in, | |
self.c_in, | |
self.c_hidden, | |
self.no_heads, | |
) | |
def _prep_inputs(self, | |
m: torch.Tensor, | |
z: Optional[torch.Tensor], | |
mask: Optional[torch.Tensor], | |
inplace_safe: bool = False, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
if mask is None: | |
# [*, N_res] | |
mask = m.new_ones(m.shape[:-1]) | |
# [*, 1, 1, N_res] | |
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] | |
if (self.pair_bias and | |
z is not None and # For the | |
self.layer_norm_z is not None and # benefit of | |
self.linear_z is not None # TorchScript | |
): | |
chunks = [] | |
for i in range(0, z.shape[-3], 256): | |
z_chunk = z[..., i: i + 256, :, :] | |
# [*, N_res, N_res, C_z] | |
z_chunk = self.layer_norm_z(z_chunk) | |
# [*, N_res, N_res, no_heads] | |
z_chunk = self.linear_z(z_chunk) | |
chunks.append(z_chunk) | |
z = torch.cat(chunks, dim=-3) | |
# [*, no_heads, N_res, N_res] | |
z = permute_final_dims(z, (2, 0, 1)) | |
return m, mask_bias, z | |
def forward(self, | |
m: torch.Tensor, | |
z: Optional[torch.Tensor] = None, | |
mask: Optional[torch.Tensor] = None, | |
use_memory_efficient_kernel: bool = False, | |
use_lma: bool = False, | |
inplace_safe: bool = False, | |
) -> torch.Tensor: | |
""" | |
Args: | |
m: | |
[*, N_res, C_m] single embedding | |
z: | |
[*, N_res, N_res, C_z] pair embedding. Required only if pair_bias is True | |
mask: | |
[*, N_res] single mask | |
""" | |
m, mask_bias, z = self._prep_inputs( | |
m, z, mask, inplace_safe=inplace_safe | |
) | |
biases = [mask_bias] | |
if(z is not None): | |
biases.append(z) | |
m = self.layer_norm_m(m) | |
m = self.mha( | |
q_x=m, | |
kv_x=m, | |
biases=biases, | |
use_memory_efficient_kernel=use_memory_efficient_kernel, | |
use_lma=use_lma, | |
) | |
return m | |
class SingleRowAttentionWithPairBias(SingleAttention): | |
""" | |
Implements Algorithm 7. | |
""" | |
def __init__(self, c_m, c_z, c_hidden, no_heads, inf=1e9): | |
""" | |
Args: | |
c_m: | |
Input channel dimension | |
c_z: | |
Pair embedding channel dimension | |
c_hidden: | |
Per-head hidden channel dimension | |
no_heads: | |
Number of attention heads | |
inf: | |
Large number used to construct attention masks | |
""" | |
super(SingleRowAttentionWithPairBias, self).__init__( | |
c_m, | |
c_hidden, | |
no_heads, | |
pair_bias=True, | |
c_z=c_z, | |
inf=inf, | |
) | |