File size: 5,156 Bytes
bebad14
 
 
dffaf30
 
bebad14
 
5e24610
c1225dc
5e24610
 
 
d5d6c6c
bebad14
28cb117
5e24610
 
 
 
 
28cb117
5e24610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab2300
5e24610
 
 
 
 
d5d6c6c
c1225dc
d5d6c6c
 
 
 
 
 
c1225dc
d5d6c6c
 
c1225dc
d5d6c6c
 
 
c1225dc
d5d6c6c
 
c1225dc
d5d6c6c
c1225dc
 
48ff744
bebad14
5e24610
bebad14
d5d6c6c
 
 
 
 
48ff744
 
 
d5d6c6c
5234d8b
5e24610
 
 
4853a01
dadbe2e
d5d6c6c
5e24610
bebad14
 
dadbe2e
bebad14
f624b87
bebad14
 
 
 
 
f354223
bebad14
c0df2f3
43105fe
f354223
 
bebad14
 
 
28cb117
bebad14
 
 
 
44470f9
28cb117
 
 
 
48ff744
28cb117
063629c
a8e9ffd
28cb117
 
5e24610
28cb117
 
 
 
296aa30
 
4853a01
 
c0df2f3
4853a01
 
28cb117
4853a01
28cb117
 
 
dadbe2e
bebad14
 
48ff744
dffaf30
bebad14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

import time

import gradio as gr

from gradio_molecule3d import Molecule3D

import numpy as np
from scipy.optimize import differential_evolution, NonlinearConstraint
from biotite.structure.io.pdb import PDBFile
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Geometry import Point3D


def generate_input_conformer(
    ligand_smiles: str,
    addHs: bool = False,
    minimize_maxIters: int = -1,
) -> Chem.Mol:

    _mol = Chem.MolFromSmiles(ligand_smiles)
    # need to add Hs to generate sensible conformers
    _mol = Chem.AddHs(_mol)

    # try embedding molecule using ETKDGv2 (default)
    confid = AllChem.EmbedMolecule(
        _mol,
        useRandomCoords=True,
        useBasicKnowledge=True,
        maxAttempts=100,
        randomSeed=42,
    )
    if confid != -1:
        if minimize_maxIters > 0:
            # molecule successfully embedded - minimize
            success = AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters)
            # 0 if the optimization converged,
            # -1 if the forcefield could not be set up,
            # 1 if more iterations are required.
            if success == 1:
                # extend optimization to double the steps (extends by the same amount)
                AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters)
    else:
        # this means EmbedMolecule failed
        # try less optimal approach
        confid = AllChem.EmbedMolecule(
            _mol,
            useRandomCoords=True,
            useBasicKnowledge=False,
            maxAttempts=100,
            randomSeed=42,
        )
    return _mol


def set_protein_to_new_coord(input_pdb_file, new_coord, output_file):
    structure = PDBFile.read(input_pdb_file).get_structure()
    structure.coord = np.ones_like(structure.coord) * np.array(new_coord)
    file = PDBFile()
    file.set_structure(structure)
    file.write(output_file)


# def optimize_coordinate(points, bound_buffer=15, dmin=6.05):

#     bounds = list(
#         zip(
#             np.average(points, axis=0) - [bound_buffer]*3,
#             np.average(points, axis=0) + [bound_buffer]*3
#             )
#         )

#     # Define the constraint function (ensure dmin distance)
#     con = NonlinearConstraint(lambda x: np.min(np.linalg.norm(points - x, axis=1)), dmin, 8)

#     # Define the objective function (minimize pairwise distance)
#     def objective(x):
#         return np.sum(np.linalg.norm(points - x, axis=1))

#     # Perform differential evolution to find the optimal coordinate
#     result = differential_evolution(objective, bounds, constraints=con)

#     return result.x, result.fun


def predict(input_sequence, input_ligand, input_msa, input_protein):
    start_time = time.time()
    
    # Do inference here
    mol = generate_input_conformer(input_ligand)
    conf = mol.GetConformer()
    # set ligand
    for i in range(mol.GetNumAtoms()):
        conf.SetAtomPosition(i, Point3D(0,0,0))    
    molwriter = Chem.SDWriter("test_docking_pose.sdf")
    molwriter.write(mol)

    # set protein
    new_coord = [6.02, 0, 0]
    output_file = "test_out.pdb"
    set_protein_to_new_coord(input_protein, new_coord, output_file)
    
    # return an output pdb file with the protein and ligand with resname LIG or UNK. 
    # also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users
    metrics = {}
    
    end_time = time.time()
    run_time = end_time - start_time
    return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time

with gr.Blocks() as app:

    gr.Markdown("# Template for inference")

    gr.Markdown("Title, description, and other information about the model")   
    with gr.Row():
        input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
        input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
    with gr.Row():
        input_msa = gr.File(label="Input Protein MSA (A3M)")
        input_protein = gr.File(label="Input protein monomer")
        
    
    # define any options here

    # for automated inference the default options are used
    # slider_option = gr.Slider(0,10, label="Slider Option")
    # checkbox_option = gr.Checkbox(label="Checkbox Option")
    # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")

    btn = gr.Button("Run Inference")

    gr.Examples(
        [
            [
                "",
                "COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
                "empty_file.a3m",
                "test_input.pdb"
            ],
        ],
        [input_sequence, input_ligand, input_msa, input_protein],
    )
    reps =    [
    {
      "model": 0,
      "style": "sphere",
      "color": "grayCarbon",
    },
        {
      "model": 1,
      "style": "stick",
      "color": "greenCarbon",
    }
        
  ]
    
    out = Molecule3D(reps=reps)
    metrics = gr.JSON(label="Metrics")
    run_time = gr.Textbox(label="Runtime")

    btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out, metrics, run_time])

app.launch()