File size: 3,195 Bytes
bebad14
 
8b16c9c
bebad14
dffaf30
 
bebad14
 
 
401871e
 
 
 
 
 
 
a5ea9fe
2b739e0
401871e
 
 
 
28cb117
 
21a7e32
 
bebad14
3240ef1
bebad14
fd32c9f
401871e
 
8b16c9c
401871e
 
bebad14
 
401871e
bebad14
f624b87
bebad14
 
 
 
 
fd32c9f
085cf46
 
3240ef1
fd32c9f
085cf46
 
fd32c9f
 
f354223
bebad14
 
 
28cb117
bebad14
 
 
 
44470f9
28cb117
 
 
 
21a7e32
a8dbb68
fd32c9f
21a7e32
a8dbb68
fd32c9f
28cb117
 
21a7e32
28cb117
 
 
 
3ad143d
6242bac
28cb117
4853a01
54bb0ac
 
3ad143d
6242bac
 
3ad143d
28cb117
8b16c9c
28cb117
 
8b16c9c
bebad14
 
21a7e32
dffaf30
bebad14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

import time
import json 

import gradio as gr

from gradio_molecule3d import Molecule3D


import numpy as np
from biotite.structure.io.pdb import PDBFile

def set_all_to_zero(input_pdb_file_1, input_pdb_file_2, output_file):
    structure1 = PDBFile.read(input_pdb_file_1).get_structure()
    structure2 = PDBFile.read(input_pdb_file_2).get_structure()
    structure1.coord = np.zeros_like(structure1.coord)
    # shift second to avoid interchain "clash"
    structure2.coord = np.ones_like(structure2.coord) * np.array([3.7, 0, 0])
    out_structure = structure1 + structure2
    file = PDBFile()
    file.set_structure(out_structure)
    file.write(output_file)


def predict(input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2,  input_protein_2):
# def predict(input_protein_1, input_protein_2):
    start_time = time.time()

    # Do inference here
    # return an output pdb file with the protein and two chains A and B.  
    output_file = "test_out.pdb"
    set_all_to_zero(input_protein_1, input_protein_2, output_file)
    # also return a JSON with any metrics you want to report
    metrics = {"F_nat": 100}
    
    end_time = time.time()
    run_time = end_time - start_time
    return output_file, json.dumps(metrics), run_time

with gr.Blocks() as app:

    gr.Markdown("# Template for inference")

    gr.Markdown("Title, description, and other information about the model")   
    with gr.Row():
        with gr.Column():
            input_seq_1 = gr.Textbox(lines=3, label="Input Protein 1 sequence (FASTA)")
            input_msa_1 = gr.File(label="Input MSA Protein 1 (A3M)")
            input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
        with gr.Column():
            input_seq_2 = gr.Textbox(lines=3, label="Input Protein 2 sequence (FASTA)")
            input_msa_2 = gr.File(label="Input MSA Protein 2 (A3M)")
            input_protein_2 = gr.File(label="Input Protein 2 structure (PDB)")
        
        
    
    # define any options here

    # for automated inference the default options are used
    # slider_option = gr.Slider(0,10, label="Slider Option")
    # checkbox_option = gr.Checkbox(label="Checkbox Option")
    # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")

    btn = gr.Button("Run Inference")

    gr.Examples(
        [
            [
                "",
                "empty_file.a3m",
                "3v1c_A.pdb",
                "",
                "empty_file.a3m",
                "3v1c_B.pdb",
            ],
        ],
        [input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2,  input_protein_2],
    )
    reps =    [
    {
      "model": 0,
      "style": "sphere",
      "chain": "A",
      "color": "whiteCarbon",
    },
    {
      "model": 0,
      "style": "sphere",
       "chain": "B",
      "color": "greenCarbon",
    }, 
  ]
    # outputs 
    
    out = Molecule3D(reps=reps)
    metrics = gr.JSON(label="Metrics")
    run_time = gr.Textbox(label="Runtime")

    btn.click(predict, inputs=[input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2,  input_protein_2], outputs=[out, metrics, run_time])

app.launch()