File size: 5,415 Bytes
2596438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3871f
2596438
 
 
 
 
 
 
 
 
 
 
876eb15
ce3871f
2596438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3871f
 
 
 
 
 
876eb15
ce3871f
 
 
 
2596438
 
ce3871f
2596438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb83fd2
2596438
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import annotations
from pathlib import Path
import time
from biotite.application.autodock import VinaApp

import gradio as gr

from gradio_molecule3d import Molecule3D
from gradio_molecule2d import molecule2d
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
import pandas as pd
from biotite.structure import centroid, from_template
from biotite.structure.io import load_structure
from biotite.structure.io.mol import MOLFile, SDFile
from biotite.structure.io.pdb import PDBFile

from plinder.eval.docking.write_scores import evaluate


EVAL_METRICS = ["system", "LDDT-PLI", "LDDT-LP", "BISY-RMSD"]

EVAL_METRICS_PINDER = ["system","L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]





def get_metrics(
    system_id: str,
    receptor_file: Path,
    ligand_file: Path,
    flexible: bool = True,
    posebusters: bool = True,
    methodname: str = "",
    store:bool =True
) -> tuple[pd.DataFrame, float]:
    start_time = time.time()
    metrics = pd.DataFrame(
        [
            evaluate(
                model_system_id=system_id,
                reference_system_id=system_id,
                receptor_file=receptor_file,
                ligand_file_list=[Path(ligand_file)],
                flexible=flexible,
                posebusters=posebusters,
                posebusters_full=False,
            ).get("LIG_0", {})
        ]
    )
    if posebusters:
        metrics["posebusters"] = metrics[
            [col for col in metrics.columns if col.startswith("posebusters_")]
        ].sum(axis=1)
        metrics["posebusters_valid"] = metrics[
            [col for col in metrics.columns if col.startswith("posebusters_")]
        ].sum(axis=1) == 20
    columns = ["reference", "lddt_pli_ave", "lddt_lp_ave", "bisy_rmsd_ave"]
    if flexible:
        columns.extend(["lddt", "bb_lddt"])
    if posebusters:
        columns.extend([col for col in metrics.columns if col.startswith("posebusters")])

    metrics = metrics[columns].copy()
    mapping = {
            "lddt_pli_ave": "LDDT-PLI",
            "lddt_lp_ave": "LDDT-LP",
            "bisy_rmsd_ave": "BISY-RMSD",
            "reference": "system",
        }
    if flexible:
        mapping["lddt"] = "LDDT"
        mapping["bb_lddt"] = "Backbone LDDT"
    if posebusters:
        mapping["posebusters"] = "PoseBusters #checks"
        mapping["posebusters_valid"] = "PoseBusters valid"
    metrics.rename(
        columns=mapping,
        inplace=True,
    )
    end_time = time.time()
    run_time = end_time - start_time
    return metrics, run_time


def get_metrics_pinder(
    system_id: str,
    receptor_file: Path,
    ligand_file: Path,
    flexible: bool = True,
    posebusters: bool = True,
    methodname: str = "",
    store:bool =True
) -> tuple[pd.DataFrame, float]:
    return pd.DataFrame(), 0

with gr.Blocks() as app:
    with gr.Tab("🧬 PINDER evaluation template"):
        with gr.Row():
            with gr.Column():
                input_system_id_pinder = gr.Textbox(label="PINDER system ID")
                input_receptor_file_pinder = gr.File(label="Receptor file")
                input_ligand_file_pinder = gr.File(label="Ligand file")
                methodname_pinder = gr.Textbox(label="Name of your method in the format mlsb/spacename")
                store_pinder = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
        eval_btn_pinder = gr.Button("Run Evaluation")

       
                
        
    with gr.Tab("⚖️ PLINDER evaluation template"):
        with gr.Row():
            with gr.Column():
                input_system_id = gr.Textbox(label="PLINDER system ID")
                input_receptor_file = gr.File(label="Receptor file (CIF)")
                input_ligand_file = gr.File(label="Ligand file (SDF)")
                flexible = gr.Checkbox(label="Flexible docking", value=True)
                posebusters = gr.Checkbox(label="PoseBusters", value=True)
                methodname = gr.Textbox(label="Name of your method in the format mlsb/spacename")
                store = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)

        eval_btn = gr.Button("Run Evaluation")
        gr.Examples(
            [
                [
                    "4neh__1__1.B__1.H",
                    "input_protein_test.cif",
                    "input_ligand_test.sdf",
                    True,
                    True,
                ],
            ],
            [input_system_id, input_receptor_file, input_ligand_file, flexible, posebusters,  methodname, store],
        )
        eval_run_time = gr.Textbox(label="Evaluation runtime")
        metric_table = gr.DataFrame(
            pd.DataFrame([], columns=EVAL_METRICS), label="Evaluation metrics"
        )

        metric_table_pinder = gr.DataFrame(
            pd.DataFrame([], columns=EVAL_METRICS_PINDER), label="Evaluation metrics"
        )

        eval_btn.click(
            get_metrics,
            inputs=[input_system_id, input_receptor_file, input_ligand_file, flexible, posebusters],
            outputs=[metric_table, eval_run_time],
        )
        eval_btn_pinder.click(
            get_metrics_pinder,
            inputs=[input_system_id_pinder, input_receptor_file_pinder, input_ligand_file_pinder, methodname_pinder, store_pinder],
            outputs=[metric_table_pinder, eval_run_time],
        )

app.launch()