Spaces:
Sleeping
Sleeping
File size: 38,121 Bytes
c618657 bebad14 8b16c9c dffaf30 bebad14 c618657 6b17b95 4a3e49d 50c03e8 196c9bb c618657 6b17b95 4dc8f8f bee09fe c618657 196c9bb 4dc8f8f c618657 4dc8f8f c618657 4dc8f8f c618657 6b17b95 bee09fe 6b17b95 c618657 6b17b95 c618657 6b17b95 c618657 6b17b95 3c186a4 3680967 6b17b95 bee09fe 6b17b95 3680967 6b17b95 67927b2 6b17b95 3c186a4 4a3e49d c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bebad14 c618657 bebad14 c618657 28cb117 c618657 28cb117 c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 bee09fe c618657 6b17b95 c618657 06baf9d de51940 c618657 809b460 bebad14 6b17b95 4dc8f8f 4a3e49d c618657 6b17b95 196c9bb 0e58a55 6b17b95 0e58a55 534403a 0e58a55 4a3e49d fd32c9f 8b16c9c 1405a8b bebad14 6b17b95 bebad14 f624b87 bebad14 c618657 bebad14 fd32c9f 1891093 fd32c9f 809b460 1891093 fd32c9f f354223 bebad14 28cb117 bebad14 44470f9 28cb117 fd32c9f 28cb117 7e327ca 28cb117 6242bac 28cb117 4853a01 54bb0ac 6242bac 54bb0ac 4853a01 6242bac 4853a01 54bb0ac 6242bac 54bb0ac 6242bac 54bb0ac 6242bac 54bb0ac 28cb117 8b16c9c 28cb117 8b16c9c bebad14 8b16c9c dffaf30 bebad14 c618657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 |
from __future__ import annotations
import time
import json
import gradio as gr
from gradio_molecule3d import Molecule3D
import torch
from pinder.core import get_pinder_location
get_pinder_location()
from pytorch_lightning import LightningModule
import torch
import lightning.pytorch as pl
import torch.nn.functional as F
import torch.nn as nn
import torchmetrics
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_mean_pool
from torch.nn import Sequential, Linear, BatchNorm1d, ReLU
from torch_scatter import scatter
from torch.nn import Module
import pinder.core as pinder
pinder.__version__
from torch_geometric.loader import DataLoader
from pinder.core.loader.dataset import get_geo_loader
from pinder.core import download_dataset
from pinder.core import get_index
from pinder.core import get_metadata
from pathlib import Path
import pandas as pd
from pinder.core import PinderSystem
import torch
from pinder.core.loader.dataset import PPIDataset
from pinder.core.loader.geodata import NodeRepresentation
import pickle
from pinder.core import get_index, PinderSystem
from torch_geometric.data import HeteroData
import os
from enum import Enum
import numpy as np
import torch
import lightning.pytorch as pl
from numpy.typing import NDArray
from torch_geometric.data import HeteroData
from pinder.core.index.system import PinderSystem
from pinder.core.loader.structure import Structure
from pinder.core.utils import constants as pc
from pinder.core.utils.log import setup_logger
from pinder.core.index.system import _align_monomers_with_mask
from pinder.core.loader.structure import Structure
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_mean_pool
from torch.nn import Sequential, Linear, BatchNorm1d, ReLU
from torch_scatter import scatter
from torch.nn import Module
import time
from torch_geometric.nn import global_max_pool
import copy
import inspect
import warnings
from typing import Optional, Tuple, Union
import torch
from torch import Tensor
from torch_geometric.data import Data, Dataset, HeteroData
from torch_geometric.data.feature_store import FeatureStore
from torch_geometric.data.graph_store import GraphStore
from torch_geometric.loader import (
LinkLoader,
LinkNeighborLoader,
NeighborLoader,
NodeLoader,
)
from torch_geometric.loader.dataloader import DataLoader
from torch_geometric.loader.utils import get_edge_label_index, get_input_nodes
from torch_geometric.sampler import BaseSampler, NeighborSampler
from torch_geometric.typing import InputEdges, InputNodes
try:
from lightning.pytorch import LightningDataModule as PLLightningDataModule
no_pytorch_lightning = False
except (ImportError, ModuleNotFoundError):
PLLightningDataModule = object
no_pytorch_lightning = True
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.loggers.tensorboard import TensorBoardLogger
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from torch_geometric.data.lightning.datamodule import LightningDataset
from pytorch_lightning.loggers.wandb import WandbLogger
def get_system(system_id: str) -> PinderSystem:
return PinderSystem(system_id)
from Bio import PDB
from Bio.PDB.PDBIO import PDBIO
from pinder.core.structure.atoms import atom_array_from_pdb_file
from pathlib import Path
from pinder.eval.dockq.biotite_dockq import BiotiteDockQ
def extract_coordinates_from_pdb(filename, atom_name="CA"):
"""
Extracts coordinates for specific atoms from a PDB file and returns them as a list of tuples.
Each tuple contains (x, y, z) coordinates of the specified atom type.
Parameters:
filename (str): Path to the PDB file.
atom_name (str): The name of the atom to filter by (e.g., "CA" for alpha carbon).
Returns:
list of tuple: List of coordinates as (x, y, z) tuples for the specified atom.
"""
parser = PDB.PDBParser(QUIET=True)
structure = parser.get_structure("structure", filename)
coordinates = []
# Loop through each model, chain, residue, and atom to collect coordinates of specified atom
for model in structure:
for chain in model:
for residue in chain:
for atom in residue:
# Filter for specific atom name
xyz = atom.coord # Coordinates are in a numpy array
coordinates.append([xyz[0], xyz[1], xyz[2]])
return coordinates
log = setup_logger(__name__)
try:
from torch_cluster import knn_graph
torch_cluster_installed = True
except ImportError as e:
log.warning(
"torch-cluster is not installed!"
"Please install the appropriate library for your pytorch installation."
"See https://github.com/rusty1s/pytorch_cluster/issues/185 for background."
)
torch_cluster_installed = False
def structure2tensor(
atom_coordinates: NDArray[np.double] | None = None,
atom_types: NDArray[np.str_] | None = None,
element_types: NDArray[np.str_] | None = None,
residue_coordinates: NDArray[np.double] | None = None,
residue_ids: NDArray[np.int_] | None = None,
residue_types: NDArray[np.str_] | None = None,
chain_ids: NDArray[np.str_] | None = None,
dtype: torch.dtype = torch.float32,
) -> dict[str, torch.Tensor]:
property_dict = {}
if atom_types is not None:
unknown_name_idx = max(pc.ALL_ATOM_POSNS.values()) + 1
types_array_at = np.zeros((len(atom_types), 1))
for i, name in enumerate(atom_types):
types_array_at[i] = pc.ALL_ATOM_POSNS.get(name, unknown_name_idx)
property_dict["atom_types"] = torch.tensor(types_array_at).type(dtype)
if element_types is not None:
types_array_ele = np.zeros((len(element_types), 1))
for i, name in enumerate(element_types):
types_array_ele[i] = pc.ELE2NUM.get(name, pc.ELE2NUM["other"])
property_dict["element_types"] = torch.tensor(types_array_ele).type(dtype)
if residue_types is not None:
unknown_name_idx = max(pc.AA_TO_INDEX.values()) + 1
types_array_res = np.zeros((len(residue_types), 1))
for i, name in enumerate(residue_types):
types_array_res[i] = pc.AA_TO_INDEX.get(name, unknown_name_idx)
property_dict["residue_types"] = torch.tensor(types_array_res).type(dtype)
if atom_coordinates is not None:
property_dict["atom_coordinates"] = torch.tensor(atom_coordinates, dtype=dtype)
if residue_coordinates is not None:
property_dict["residue_coordinates"] = torch.tensor(
residue_coordinates, dtype=dtype
)
if residue_ids is not None:
property_dict["residue_ids"] = torch.tensor(residue_ids, dtype=dtype)
if chain_ids is not None:
property_dict["chain_ids"] = torch.zeros(len(chain_ids), dtype=dtype)
property_dict["chain_ids"][chain_ids == "L"] = 1
return property_dict
class NodeRepresentation(Enum):
Surface = "surface"
Atom = "atom"
Residue = "residue"
class PairedPDB(HeteroData): # type: ignore
@classmethod
def from_tuple_system(
cls,
tupal: tuple = (Structure , Structure , Structure),
add_edges: bool = True,
k: int = 10,
) -> PairedPDB:
return cls.from_structure_pair(
holo=tupal[0],
apo=tupal[1],
add_edges=add_edges,
k=k,
)
@classmethod
def from_structure_pair(
cls,
holo: Structure,
apo: Structure,
add_edges: bool = True,
k: int = 10,
) -> PairedPDB:
graph = cls()
holo_calpha = holo.filter("atom_name", mask=["CA"])
apo_calpha = apo.filter("atom_name", mask=["CA"])
r_h = (holo.dataframe['chain_id'] == 'R').sum()
r_a = (apo.dataframe['chain_id'] == 'R').sum()
holo_r_props = structure2tensor(
atom_coordinates=holo.coords[:r_h],
atom_types=holo.atom_array.atom_name[:r_h],
element_types=holo.atom_array.element[:r_h],
residue_coordinates=holo_calpha.coords[:r_h],
residue_types=holo_calpha.atom_array.res_name[:r_h],
residue_ids=holo_calpha.atom_array.res_id[:r_h],
)
holo_l_props = structure2tensor(
atom_coordinates=holo.coords[r_h:],
atom_types=holo.atom_array.atom_name[r_h:],
element_types=holo.atom_array.element[r_h:],
residue_coordinates=holo_calpha.coords[r_h:],
residue_types=holo_calpha.atom_array.res_name[r_h:],
residue_ids=holo_calpha.atom_array.res_id[r_h:],
)
apo_r_props = structure2tensor(
atom_coordinates=apo.coords[:r_a],
atom_types=apo.atom_array.atom_name[:r_a],
element_types=apo.atom_array.element[:r_a],
residue_coordinates=apo_calpha.coords[:r_a],
residue_types=apo_calpha.atom_array.res_name[:r_a],
residue_ids=apo_calpha.atom_array.res_id[:r_a],
)
apo_l_props = structure2tensor(
atom_coordinates=apo.coords[r_a:],
atom_types=apo.atom_array.atom_name[r_a:],
element_types=apo.atom_array.element[r_a:],
residue_coordinates=apo_calpha.coords[r_a:],
residue_types=apo_calpha.atom_array.res_name[r_a:],
residue_ids=apo_calpha.atom_array.res_id[r_a:],
)
graph["ligand"].x = apo_l_props["atom_types"]
graph["ligand"].pos = apo_l_props["atom_coordinates"]
graph["receptor"].x = apo_r_props["atom_types"]
graph["receptor"].pos = apo_r_props["atom_coordinates"]
graph["ligand"].y = holo_l_props["atom_coordinates"]
# graph["ligand"].pos = holo_l_props["atom_coordinates"]
graph["receptor"].y = holo_r_props["atom_coordinates"]
# graph["receptor"].pos = holo_r_props["atom_coordinates"]
if add_edges and torch_cluster_installed:
graph["ligand"].edge_index = knn_graph(
graph["ligand"].pos, k=k
)
graph["receptor"].edge_index = knn_graph(
graph["receptor"].pos, k=k
)
# graph["ligand"].edge_index = knn_graph(
# graph["ligand"].pos, k=k
# )
# graph["receptor"].edge_index = knn_graph(
# graph["receptor"].pos, k=k
# )
return graph
#create_graph takes inputs apo_ligand, apo_residue and paired holo as pdb3(ground truth).
def create_graph(pdb1, pdb2, k=5):
r"""
Create a heterogeneous graph from two PDB files, with the ligand and receptor
as separate nodes, and their respective features and edges.
Args:
pdb1 (str): PDB file path for ligand.
pdb2 (str): PDB file path for receptor.
coords3 (list): List of coordinates used for `y` values (e.g., binding affinity, etc.).
k (int): Number of nearest neighbors for constructing the knn graph.
Returns:
HeteroData: A PyG HeteroData object containing ligand and receptor data.
"""
# Extract coordinates from PDB files
coords1 = torch.tensor(extract_coordinates_from_pdb(pdb1),dtype=torch.float)
coords2 = torch.tensor(extract_coordinates_from_pdb(pdb2),dtype=torch.float)
# coords3 = torch.tensor(extract_coordinates_from_pdb(pdb3),dtype=torch.float)
# Create the HeteroData object
data = HeteroData()
# Define ligand node features
data["ligand"].x = torch.tensor(coords1, dtype=torch.float)
data["ligand"].pos = coords1
# data["ligand"].y = torch.tensor(coords3[:len(coords1)], dtype=torch.float)
# Define receptor node features
data["receptor"].x = torch.tensor(coords2, dtype=torch.float)
data["receptor"].pos = coords2
# data["receptor"].y = torch.tensor(coords3[len(coords1):], dtype=torch.float)
# Construct k-NN graph for ligand
ligand_edge_index = knn_graph(data["ligand"].pos, k=k)
data["ligand"].edge_index = ligand_edge_index
# Construct k-NN graph for receptor
receptor_edge_index = knn_graph(data["receptor"].pos, k=k)
data["receptor"].edge_index = receptor_edge_index
# Convert edge index to SparseTensor for ligand
data["ligand", "ligand"].edge_index = ligand_edge_index
# Convert edge index to SparseTensor for receptor
data["receptor", "receptor"].edge_index = receptor_edge_index
return data
def update_pdb_coordinates_from_tensor(input_filename, output_filename, coordinates_tensor):
r"""
Updates atom coordinates in a PDB file with new transformed coordinates provided in a tensor.
Parameters:
- input_filename (str): Path to the original PDB file.
- output_filename (str): Path to the new PDB file to save updated coordinates.
- coordinates_tensor (torch.Tensor): Tensor of shape (1, N, 3) with transformed coordinates.
"""
# Convert the tensor to a list of tuples
new_coordinates = coordinates_tensor.squeeze(0).tolist()
# Create a parser and parse the structure
parser = PDB.PDBParser(QUIET=True)
structure = parser.get_structure("structure", input_filename)
# Flattened iterator for atoms to update coordinates
atom_iterator = (atom for model in structure for chain in model for residue in chain for atom in residue)
# Update each atom's coordinates
for atom, (new_x, new_y, new_z) in zip(atom_iterator, new_coordinates):
original_anisou = atom.get_anisou()
original_uij = atom.get_siguij()
original_tm= atom.get_sigatm()
original_occupancy = atom.get_occupancy()
original_bfactor = atom.get_bfactor()
original_altloc = atom.get_altloc()
original_fullname = atom.get_fullname()
original_serial_number = atom.get_serial_number()
original_element = atom.get_charge()
original_id = atom.get_full_id()
original_idx = atom.get_id()
original_level = atom.get_level()
original_name = atom.get_name()
original_parent = atom.get_parent()
original_radius = atom.get_radius()
# Update only the atom coordinates, keep other fields intact
atom.coord = np.array([new_x, new_y, new_z])
# Reapply the preserved properties
atom.set_anisou(original_anisou)
atom.set_siguij(original_uij)
atom.set_sigatm(original_tm)
atom.set_occupancy(original_occupancy)
atom.set_bfactor(original_bfactor)
atom.set_altloc(original_altloc)
# atom.set_fullname(original_fullname)
atom.set_serial_number(original_serial_number)
atom.set_charge(original_element)
atom.set_radius(original_radius)
atom.set_parent(original_parent)
# atom.set_name(original_name)
# atom.set_leve
output_filename = "/tmp/" + output_filename
# Save the updated structure to a new PDB file
io = PDBIO()
io.set_structure(structure)
io.save(output_filename)
# Return the path to the updated PDB file
return output_filename
def merge_pdb_files(file1, file2, output_file):
r"""
Merges two PDB files by concatenating them without altering their contents.
Parameters:
- file1 (str): Path to the first PDB file (e.g., receptor).
- file2 (str): Path to the second PDB file (e.g., ligand).
- output_file (str): Path to the output file where the merged structure will be saved.
"""
output_file = "/tmp/" + output_file
with open(output_file, 'w') as outfile:
# Copy the contents of the first file
with open(file1, 'r') as f1:
lines = f1.readlines()
# Write all lines except the last 'END' line
outfile.writelines(lines[:-1])
# Copy the contents of the second file
with open(file2, 'r') as f2:
outfile.write(f2.read())
print(f"Merged PDB saved to {output_file}")
return output_file
class MPNNLayer(MessagePassing):
def __init__(self, emb_dim=64, edge_dim=4, aggr='add'):
r"""Message Passing Neural Network Layer
Args:
emb_dim: (int) - hidden dimension d
edge_dim: (int) - edge feature dimension d_e
aggr: (str) - aggregation function \oplus (sum/mean/max)
"""
# Set the aggregation function
super().__init__(aggr=aggr)
self.emb_dim = emb_dim
self.edge_dim = edge_dim
# MLP \psi for computing messages m_ij
# Implemented as a stack of Linear->BN->ReLU->Linear->BN->ReLU
# dims: (2d + d_e) -> d
self.mlp_msg = Sequential(
Linear(2*emb_dim + edge_dim, emb_dim), BatchNorm1d(emb_dim), ReLU(),
Linear(emb_dim, emb_dim), BatchNorm1d(emb_dim), ReLU()
)
# MLP \phi for computing updated node features h_i^{l+1}
# Implemented as a stack of Linear->BN->ReLU->Linear->BN->ReLU
# dims: 2d -> d
self.mlp_upd = Sequential(
Linear(2*emb_dim, emb_dim), BatchNorm1d(emb_dim), ReLU(),
Linear(emb_dim, emb_dim), BatchNorm1d(emb_dim), ReLU()
)
def forward(self, h, edge_index, edge_attr):
r"""
The forward pass updates node features h via one round of message passing.
As our MPNNLayer class inherits from the PyG MessagePassing parent class,
we simply need to call the propagate() function which starts the
message passing procedure: message() -> aggregate() -> update().
The MessagePassing class handles most of the logic for the implementation.
To build custom GNNs, we only need to define our own message(),
aggregate(), and update() functions (defined subsequently).
Args:
h: (n, d) - initial node features
edge_index: (e, 2) - pairs of edges (i, j)
edge_attr: (e, d_e) - edge features
Returns:
out: (n, d) - updated node features
"""
out = self.propagate(edge_index, h=h, edge_attr=edge_attr)
return out
def message(self, h_i, h_j, edge_attr):
r"""Step (1) Message
The message() function constructs messages from source nodes j
to destination nodes i for each edge (i, j) in edge_index.
The arguments can be a bit tricky to understand: message() can take
any arguments that were initially passed to propagate. Additionally,
we can differentiate destination nodes and source nodes by appending
_i or _j to the variable name, e.g. for the node features h, we
can use h_i and h_j.
This part is critical to understand as the message() function
constructs messages for each edge in the graph. The indexing of the
original node features h (or other node variables) is handled under
the hood by PyG.
Args:
h_i: (e, d) - destination node features
h_j: (e, d) - source node features
edge_attr: (e, d_e) - edge features
Returns:
msg: (e, d) - messages m_ij passed through MLP \psi
"""
msg = torch.cat([h_i, h_j, edge_attr], dim=-1)
return self.mlp_msg(msg)
def aggregate(self, inputs, index):
r"""Step (2) Aggregate
The aggregate function aggregates the messages from neighboring nodes,
according to the chosen aggregation function ('sum' by default).
Args:
inputs: (e, d) - messages m_ij from destination to source nodes
index: (e, 1) - list of source nodes for each edge/message in input
Returns:
aggr_out: (n, d) - aggregated messages m_i
"""
return scatter(inputs, index, dim=self.node_dim, reduce=self.aggr)
def update(self, aggr_out, h):
r"""
Step (3) Update
The update() function computes the final node features by combining the
aggregated messages with the initial node features.
update() takes the first argument aggr_out, the result of aggregate(),
as well as any optional arguments that were initially passed to
propagate(). E.g. in this case, we additionally pass h.
Args:
aggr_out: (n, d) - aggregated messages m_i
h: (n, d) - initial node features
Returns:
upd_out: (n, d) - updated node features passed through MLP \phi
"""
upd_out = torch.cat([h, aggr_out], dim=-1)
return self.mlp_upd(upd_out)
def __repr__(self) -> str:
return (f'{self.__class__.__name__}(emb_dim={self.emb_dim}, aggr={self.aggr})')
class MPNNModel(Module):
def __init__(self, num_layers=4, emb_dim=64, in_dim=11, edge_dim=4, out_dim=1):
r"""Message Passing Neural Network model for graph property prediction
Args:
num_layers: (int) - number of message passing layers L
emb_dim: (int) - hidden dimension d
in_dim: (int) - initial node feature dimension d_n
edge_dim: (int) - edge feature dimension d_e
out_dim: (int) - output dimension (fixed to 1)
"""
super().__init__()
# Linear projection for initial node features
# dim: d_n -> d
self.lin_in = Linear(in_dim, emb_dim)
# Stack of MPNN layers
self.convs = torch.nn.ModuleList()
for layer in range(num_layers):
self.convs.append(MPNNLayer(emb_dim, edge_dim, aggr='add'))
# Global pooling/readout function R (mean pooling)
# PyG handles the underlying logic via global_mean_pool()
self.pool = global_mean_pool
# Linear prediction head
# dim: d -> out_dim
self.lin_pred = Linear(emb_dim, out_dim)
def forward(self, data):
r"""
Args:
data: (PyG.Data) - batch of PyG graphs
Returns:
out: (batch_size, out_dim) - prediction for each graph
"""
h = self.lin_in(data.x) # (n, d_n) -> (n, d)
for conv in self.convs:
h = h + conv(h, data.edge_index, data.edge_attr) # (n, d) -> (n, d)
# Note that we add a residual connection after each MPNN layer
h_graph = self.pool(h, data.batch) # (n, d) -> (batch_size, d)
out = self.lin_pred(h_graph) # (batch_size, d) -> (batch_size, 1)
return out.view(-1)
class EquivariantMPNNLayer(MessagePassing):
def __init__(self, emb_dim=64, aggr='add'):
r"""Message Passing Neural Network Layer
This layer is equivariant to 3D rotations and translations.
Args:
emb_dim: (int) - hidden dimension d
edge_dim: (int) - edge feature dimension d_e
aggr: (str) - aggregation function \oplus (sum/mean/max)
"""
# Set the aggregation function
super().__init__(aggr=aggr)
self.emb_dim = emb_dim
#
self.mlp_msg = Sequential(
Linear(2 * emb_dim + 1, emb_dim),
BatchNorm1d(emb_dim),
ReLU(),
Linear(emb_dim, emb_dim),
BatchNorm1d(emb_dim),
ReLU()
)
self.mlp_pos = Sequential(
Linear(emb_dim, emb_dim),
BatchNorm1d(emb_dim),
ReLU(),
Linear(emb_dim,1)
) # MLP \psi
self.mlp_upd = Sequential(
Linear(2*emb_dim, emb_dim), BatchNorm1d(emb_dim), ReLU(), Linear(emb_dim,emb_dim), BatchNorm1d(emb_dim), ReLU()
) # MLP \phi
# ===========================================
def forward(self, h, pos, edge_index):
r"""
The forward pass updates node features h via one round of message passing.
Args:
h: (n, d) - initial node features
pos: (n, 3) - initial node coordinates
edge_index: (e, 2) - pairs of edges (i, j)
edge_attr: (e, d_e) - edge features
Returns:
out: [(n, d),(n,3)] - updated node features
"""
#
out = self.propagate(edge_index=edge_index, h=h, pos=pos)
return out
# ==========================================
#
def message(self, h_i,h_j,pos_i,pos_j):
# Compute distance between nodes i and j (Euclidean distance)
#distance_ij = torch.norm(pos_i - pos_j, dim=-1, keepdim=True) # (e, 1)
pos_diff = pos_i - pos_j
dists = torch.norm(pos_diff,dim=-1).unsqueeze(1)
# Concatenate node features, edge features, and distance
msg = torch.cat([h_i , h_j, dists], dim=-1)
msg = self.mlp_msg(msg)
pos_diff = pos_diff * self.mlp_pos(msg) # (e, 2d + d_e + 1)
# (e, d)
return msg , pos_diff
# ...
#
def aggregate(self, inputs, index):
r"""The aggregate function aggregates the messages from neighboring nodes,
according to the chosen aggregation function ('sum' by default).
Args:
inputs: (e, d) - messages m_ij from destination to source nodes
index: (e, 1) - list of source nodes for each edge/message in input
Returns:
aggr_out: (n, d) - aggregated messages m_i
"""
msgs , pos_diffs = inputs
msg_aggr = scatter(msgs, index , dim = self.node_dim , reduce = self.aggr)
pos_aggr = scatter(pos_diffs, index, dim = self.node_dim , reduce = "mean")
return msg_aggr , pos_aggr
def update(self, aggr_out, h , pos):
msg_aggr , pos_aggr = aggr_out
upd_out = self.mlp_upd(torch.cat((h, msg_aggr), dim=-1))
upd_pos = pos + pos_aggr
return upd_out , upd_pos
def __repr__(self) -> str:
return (f'{self.__class__.__name__}(emb_dim={self.emb_dim}, aggr={self.aggr})')
class FinalMPNNModel(MPNNModel):
def __init__(self, num_layers=4, emb_dim=64, in_dim=3, num_heads = 2):
r"""Message Passing Neural Network model for graph property prediction
This model uses both node features and coordinates as inputs, and
is invariant to 3D rotations and translations (the constituent MPNN layers
are equivariant to 3D rotations and translations).
Args:
num_layers: (int) - number of message passing layers L
emb_dim: (int) - hidden dimension d
in_dim: (int) - initial node feature dimension d_n
edge_dim: (int) - edge feature dimension d_e
out_dim: (int) - output dimension (fixed to 1)
"""
super().__init__()
# Linear projection for initial node features
# dim: d_n -> d
self.lin_in = Linear(in_dim, emb_dim)
self.equiv_layer = EquivariantMPNNLayer(emb_dim=emb_dim)
# Stack of MPNN layers
self.convs = torch.nn.ModuleList()
for layer in range(num_layers):
self.convs.append(EquivariantMPNNLayer(emb_dim, aggr='add'))
self.cross_attention = nn.MultiheadAttention(emb_dim, num_heads, batch_first=True)
self.fc_rotation = nn.Linear(emb_dim, 9)
self.fc_translation = nn.Linear(emb_dim, 3)
# Global pooling/readout function R (mean pooling)
# PyG handles the underlying logic via global_mean_pool()
# self.pool = global_mean_pool
def naive_single(self, receptor, ligand , receptor_edge_index , ligand_edge_index):
r"""
Processes a single receptor-ligand pair.
Args:
receptor: Tensor of shape (1, num_receptor_atoms, 3) (receptor coordinates)
ligand: Tensor of shape (1, num_ligand_atoms, 3) (ligand coordinates)
Returns:
rotation_matrix: Tensor of shape (1, 3, 3) predicted rotation matrix for the ligand.
translation_vector: Tensor of shape (1, 3) predicted translation vector for the ligand.
"""
# h_receptor = receptor # Initial node features for the receptor
# h_ligand = ligand
h_receptor = self.lin_in(receptor)
h_ligand = self.lin_in(ligand) # Initial node features for the ligand
pos_receptor = receptor # Initial positions
pos_ligand = ligand
for layer in self.convs:
# Apply the equivariant message-passing layer for both receptor and ligand
h_receptor, pos_receptor = layer(h_receptor, pos_receptor,receptor_edge_index )
h_ligand, pos_ligand = layer(h_ligand, pos_ligand, ligand_edge_index)
# print("Shape of h_receptor:", h_receptor.shape)
# print("Shape of h_ligand:", h_ligand.shape)
# Pass the layer outputs through MLPs for embeddings
emb_features_receptor = h_receptor
emb_features_ligand = h_ligand
attn_output, _ = self.cross_attention(emb_features_receptor, emb_features_ligand, emb_features_ligand)
rotation_matrix = self.fc_rotation(attn_output.mean(dim=0))
rotation_matrix = rotation_matrix.view(-1, 3, 3)
translation_vector = self.fc_translation(attn_output.mean(dim=0))
return rotation_matrix, translation_vector
def forward(self, data):
r"""
The main forward pass of the model.
Args:
batch: Same as in forward_rot_trans.
Returns:
transformed_ligands: List of tensors, each of shape (1, num_ligand_atoms, 3)
representing the transformed ligand coordinates after applying the predicted
rotation and translation.
"""
receptor = data['receptor']['pos']
ligand = data['ligand']['pos']
receptor_edge_index = data['receptor']['edge_index']
ligand_edge_index = data['ligand']['edge_index']
rotation_matrix, translation_vector = self.naive_single(receptor, ligand,receptor_edge_index , ligand_edge_index)
# for i in range(len(ligands)):
# ligands[i] = ligands[i] @ rotation_matrix[i] + translation_vector[i]
ligands = data['ligand']['pos'] @ rotation_matrix + translation_vector
return ligands
class FinalMPNNModelight(pl.LightningModule):
def __init__(self, num_layers=4, emb_dim=32, in_dim=3, num_heads=1, lr=1e-4):
super().__init__()
self.lin_in = nn.Linear(in_dim, emb_dim)
self.convs = nn.ModuleList([EquivariantMPNNLayer(emb_dim, aggr='add') for _ in range(num_layers)])
self.cross_attention = nn.MultiheadAttention(emb_dim, num_heads, batch_first=True)
self.fc_rotation = nn.Linear(emb_dim, 9)
self.fc_translation = nn.Linear(emb_dim, 3)
self.lr = lr
def naive_single(self, receptor, ligand, receptor_edge_index, ligand_edge_index):
h_receptor = self.lin_in(receptor)
h_ligand = self.lin_in(ligand)
pos_receptor, pos_ligand = receptor, ligand
for layer in self.convs:
h_receptor, pos_receptor = layer(h_receptor, pos_receptor, receptor_edge_index)
h_ligand, pos_ligand = layer(h_ligand, pos_ligand, ligand_edge_index)
attn_output, _ = self.cross_attention(h_receptor, h_ligand, h_ligand)
rotation_matrix = self.fc_rotation(attn_output.mean(dim=0)).view(-1, 3, 3)
translation_vector = self.fc_translation(attn_output.mean(dim=0))
return rotation_matrix, translation_vector
def forward(self, data):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
receptor = data['receptor']['pos'].to(device)
ligand = data['ligand']['pos'].to(device)
receptor_edge_index = data['receptor', 'receptor']['edge_index'].to(device)
ligand_edge_index = data['ligand', 'ligand']['edge_index'].to(device)
rotation_matrix, translation_vector = self.naive_single(receptor, ligand, receptor_edge_index, ligand_edge_index)
# transformed_ligand = torch.matmul(ligand ,rotation_matrix) + translation_vector
return rotation_matrix, translation_vector
def training_step(self, batch, batch_idx):
ligand_pred = self(batch)
ligand_true = batch['ligand']['y']
loss = F.mse_loss(ligand_pred.squeeze(0), ligand_true)
self.log('train_loss', loss, batch_size=8)
return loss
def validation_step(self, batch, batch_idx):
ligand_pred = self(batch)
ligand_true = batch['ligand']['y']
loss = F.l1_loss(ligand_pred.squeeze(0), ligand_true)
self.log('val_loss', loss, prog_bar=True, batch_size=8)
return loss
def test_step(self, batch, batch_idx):
ligand_pred = self(batch)
ligand_true = batch['ligand']['y']
loss = F.l1_loss(ligand_pred.squeeze(0), ligand_true)
self.log('test_loss', loss, prog_bar=True, batch_size=8)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="min", factor=0.1, patience=5
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"monitor": "val_loss", # Monitor validation loss to adjust the learning rate
},
}
model_path = "./EquiMPNN-epoch=413-val_loss=9.25-val_acc=0.00.ckpt"
model = FinalMPNNModelight.load_from_checkpoint(model_path)
trainer = pl.Trainer(
fast_dev_run=False,
accelerator="gpu" if torch.cuda.is_available() else "cpu",
precision="bf16-mixed",
devices=1,
)
model.eval()
def predict (input_seq_1, input_msa_1, input_protein_1, input_seq_2,input_msa_2, input_protein_2):
start_time = time.time()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data = create_graph(input_protein_1, input_protein_2, k=10)
R_chain, L_chain = ["R"], ["L"]
with torch.no_grad():
mat, vect = model(data)
mat = mat.to(device)
vect = vect.to(device)
ligand1 = torch.tensor(extract_coordinates_from_pdb(input_protein_1),dtype=torch.float).to(device)
# receptor1 = torch.tensor(extract_coordinates_from_pdb(input_protein_2),dtype=torch.float).to(device)
transformed_ligand = torch.matmul(ligand1, mat) + vect
# transformed_receptor = torch.matmul(receptor1, mat) + vect
file1 = update_pdb_coordinates_from_tensor(input_protein_1, "holo_ligand.pdb", transformed_ligand)
# file2 = update_pdb_coordinates_from_tensor(input_protein_2, "holo_receptor.pdb", transformed_receptor)
out_pdb = merge_pdb_files(file1,input_protein_2,"output.pdb")
# return an output pdb file with the protein and two chains A and B.
# also return a JSON with any metrics you want to report
metrics = {"mean_plddt": 80, "binding_affinity": 2}
# native = './test_out (1).pdb'
# decoys = out_pdb
# bdq = BiotiteDockQ(
# native=native, decoys=decoys,
# # These are optional and if not specified will be assigned based on number of atoms (receptor > ligand)
# native_receptor_chain=R_chain,
# native_ligand_chain=L_chain,
# decoy_receptor_chain=R_chain,
# decoy_ligand_chain=L_chain,
# )
# dockq = bdq.calculate()
# metrics['DockQ'] = dockq
end_time = time.time()
run_time = end_time - start_time
return out_pdb,json.dumps(metrics), run_time
with gr.Blocks() as app:
gr.Markdown("# Template for inference")
gr.Markdown("EquiMPNN MOdel")
with gr.Row():
with gr.Column():
input_seq_1 = gr.Textbox(lines=3, label="Input Protein 1 sequence (FASTA)")
input_msa_1 = gr.File(label="Input MSA Protein 1 (A3M)")
input_protein_1 = gr.File(label="Input Protein 2 monomer (PDB)")
with gr.Column():
input_seq_2 = gr.Textbox(lines=3, label="Input Protein 2 sequence (FASTA)")
input_msa_2 = gr.File(label="Input MSA Protein 2 (A3M)")
input_protein_2 = gr.File(label="Input Protein 2 structure (PDB)")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD",
"3v1c_A.pdb",
"GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD",
"3v1c_B.pdb",
],
],
[input_seq_1, input_protein_1, input_seq_2, input_protein_2],
)
reps = [
{
"model": 0,
"style": "cartoon",
"chain": "A",
"color": "whiteCarbon",
},
{
"model": 0,
"style": "cartoon",
"chain": "B",
"color": "greenCarbon",
},
{
"model": 0,
"chain": "A",
"style": "stick",
"sidechain": True,
"color": "whiteCarbon",
},
{
"model": 0,
"chain": "B",
"style": "stick",
"sidechain": True,
"color": "greenCarbon"
}
]
# outputs
out = Molecule3D(reps=reps)
metrics = gr.JSON(label="Metrics")
run_time = gr.Textbox(label="Runtime")
btn.click(predict, inputs=[input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2], outputs=[out, metrics, run_time])
app.launch()
|