File size: 13,853 Bytes
f70ed41 42e86be f70ed41 42e86be f70ed41 42e86be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.graph_objs as go
import requests
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob
import yfinance as yf
# --- Constants ---
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD", "LTC-USD", "XRP-USD"]
STOCK_SYMBOLS = ["AAPL", "MSFT", "GOOGL", "AMZN"]
INTERVAL_OPTIONS = ["1h", "1d", "1wk"]
DEFAULT_FORECAST_STEPS = 24
DEFAULT_DAILY_SEASONALITY = True
DEFAULT_WEEKLY_SEASONALITY = True
DEFAULT_YEARLY_SEASONALITY = False
DEFAULT_SEASONALITY_MODE = "additive"
DEFAULT_CHANGEPOINT_PRIOR_SCALE = 0.05
RANDOM_FOREST_PARAMS = {
"n_estimators": 100,
"max_depth": 10,
"random_state": 42
}
# --- Data Fetching Functions ---
def fetch_crypto_data(symbol, interval="1h", limit=100):
try:
ticker = yf.Ticker(symbol)
if interval == "1h":
period = "1d"
df = ticker.history(period=period, interval="1h")
elif interval == "1d":
df = ticker.history(period="1y", interval=interval)
elif interval == "1wk":
df = ticker.history(period="5y", interval=interval)
else:
raise ValueError("Invalid interval for yfinance.")
if df.empty:
raise Exception("No data returned from yfinance.")
df.reset_index(inplace=True)
df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
return df.dropna()
except Exception as e:
raise Exception(f"Error fetching crypto data from yfinance: {e}")
def fetch_stock_data(symbol, interval="1d"):
try:
ticker = yf.Ticker(symbol)
df = ticker.history(period="1y", interval=interval)
if df.empty:
raise Exception("No data returned from yfinance.")
df.reset_index(inplace=True)
df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
return df.dropna()
except Exception as e:
raise Exception(f"Error fetching stock data from yfinance: {e}")
def fetch_sentiment_data(keyword):
try:
tweets = [
f"{keyword} is going to moon!",
f"I hate {keyword}, it's trash!",
f"{keyword} is amazing!"
]
sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets]
return sum(sentiments) / len(sentiments) if sentiments else 0
except Exception as e:
print(f"Sentiment analysis error: {e}")
return 0
# --- Technical Analysis Functions ---
def calculate_technical_indicators(df):
if df.empty:
return df
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
def create_technical_charts(df):
if df.empty:
return None, None, None
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
# --- Prophet Forecasting Functions ---
def prepare_data_for_prophet(df):
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
def create_forecast_plot(forecast_df):
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
)
return fig
# --- Model Training and Prediction ---
model = RandomForestClassifier(**RANDOM_FOREST_PARAMS)
def train_model(df):
if df.empty:
return
df["target"] = (df["close"].pct_change() > 0.05).astype(int)
features = df[["close", "volume"]].dropna()
target = df["target"].dropna()
if not features.empty and not target.empty:
model.fit(features, target)
else:
print("Not enough data for model training.")
def predict_growth(latest_data):
if not hasattr(model, 'estimators_') or len(model.estimators_) == 0:
return [0]
try:
prediction = model.predict(latest_data.reshape(1, -1))
return prediction
except Exception as e:
print(f"Prediction error: {e}")
return [0]
# --- Main Prediction and Display Function ---
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""):
df = pd.DataFrame()
error_message = ""
sentiment_score = 0
try:
if market_type == "Crypto":
df = fetch_crypto_data(symbol, interval=interval)
elif market_type == "Stock":
df = fetch_stock_data(symbol, interval=interval)
else:
error_message = "Invalid market type selected."
return None, None, None, None, None, "", error_message, 0
if sentiment_keyword:
sentiment_score = fetch_sentiment_data(sentiment_keyword)
except Exception as e:
error_message = f"Data Fetching Error: {e}"
return None, None, None, None, None, "", error_message, 0
if df.empty:
error_message = "No data fetched."
return None, None, None, None, None, "", error_message, 0
df["timestamp"] = pd.to_datetime(df["timestamp"])
numeric_cols = ["open", "high", "low", "close", "volume"]
df[numeric_cols] = df[numeric_cols].astype(float)
df = calculate_technical_indicators(df)
df_prophet = prepare_data_for_prophet(df)
freq = "h" if interval == "1h" or interval == "60min" else "d"
forecast_df, prophet_error = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if prophet_error:
error_message = f"Prophet Error: {prophet_error}"
return None, None, None, None, None, "", error_message, sentiment_score
forecast_plot = create_forecast_plot(forecast_df)
tech_plot, rsi_plot, macd_plot = create_technical_charts(df)
try:
train_model(df.copy())
if not df.empty:
latest_data = df[["close", "volume"]].iloc[-1].values
growth_prediction = predict_growth(latest_data)
growth_label = "Yes" if growth_prediction[0] == 1 else "No"
else:
growth_label = "N/A: Insufficient Data"
except Exception as e:
error_message = f"Model Error: {e}"
growth_label = "N/A"
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("# Market Analysis and Prediction")
with gr.Row():
with gr.Column():
market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTC-USD")
interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=DEFAULT_FORECAST_STEPS, step=1)
daily_box = gr.Checkbox(label="Daily Seasonality", value=DEFAULT_DAILY_SEASONALITY)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=DEFAULT_WEEKLY_SEASONALITY)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=DEFAULT_YEARLY_SEASONALITY)
seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value=DEFAULT_SEASONALITY_MODE)
changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=DEFAULT_CHANGEPOINT_PRIOR_SCALE)
sentiment_keyword_txt = gr.Textbox(label="Sentiment Keyword (optional)")
with gr.Column():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
growth_label_output = gr.Label(label="Explosive Growth Prediction")
sentiment_label_output = gr.Number(label="Sentiment Score")
def update_symbol_choices(market_type):
if market_type == "Crypto":
return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTC-USD")
elif market_type == "Stock":
return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL")
return gr.Dropdown(choices=[], value=None)
market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])
analyze_button = gr.Button("Analyze Market", variant="primary")
analyze_button.click(
fn=analyze_market,
inputs=[
market_type_dd,
symbol_dd,
interval_dd,
forecast_steps_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
sentiment_keyword_txt,
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output, gr.Label(label="Error Message"), sentiment_label_output]
)
if __name__ == "__main__":
demo.launch() |