File size: 13,853 Bytes
f70ed41
42e86be
 
 
 
 
 
 
 
f70ed41
42e86be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70ed41
 
42e86be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.graph_objs as go
import requests
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob
import yfinance as yf

# --- Constants ---
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD", "LTC-USD", "XRP-USD"]
STOCK_SYMBOLS = ["AAPL", "MSFT", "GOOGL", "AMZN"]
INTERVAL_OPTIONS = ["1h", "1d", "1wk"]
DEFAULT_FORECAST_STEPS = 24
DEFAULT_DAILY_SEASONALITY = True
DEFAULT_WEEKLY_SEASONALITY = True
DEFAULT_YEARLY_SEASONALITY = False
DEFAULT_SEASONALITY_MODE = "additive"
DEFAULT_CHANGEPOINT_PRIOR_SCALE = 0.05
RANDOM_FOREST_PARAMS = {
    "n_estimators": 100,
    "max_depth": 10,
    "random_state": 42
}

# --- Data Fetching Functions ---
def fetch_crypto_data(symbol, interval="1h", limit=100):
    try:
        ticker = yf.Ticker(symbol)
        if interval == "1h":
            period = "1d"
            df = ticker.history(period=period, interval="1h")
        elif interval == "1d":
            df = ticker.history(period="1y", interval=interval)
        elif interval == "1wk":
            df = ticker.history(period="5y", interval=interval)
        else:
            raise ValueError("Invalid interval for yfinance.")
        if df.empty:
            raise Exception("No data returned from yfinance.")
        df.reset_index(inplace=True)
        df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
        df = df[["timestamp", "open", "high", "low", "close", "volume"]]
        return df.dropna()
    except Exception as e:
        raise Exception(f"Error fetching crypto data from yfinance: {e}")

def fetch_stock_data(symbol, interval="1d"):
    try:
        ticker = yf.Ticker(symbol)
        df = ticker.history(period="1y", interval=interval)
        if df.empty:
            raise Exception("No data returned from yfinance.")
        df.reset_index(inplace=True)
        df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
        df = df[["timestamp", "open", "high", "low", "close", "volume"]]
        return df.dropna()
    except Exception as e:
        raise Exception(f"Error fetching stock data from yfinance: {e}")

def fetch_sentiment_data(keyword):
    try:
        tweets = [
            f"{keyword} is going to moon!",
            f"I hate {keyword}, it's trash!",
            f"{keyword} is amazing!"
        ]
        sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets]
        return sum(sentiments) / len(sentiments) if sentiments else 0
    except Exception as e:
        print(f"Sentiment analysis error: {e}")
        return 0

# --- Technical Analysis Functions ---
def calculate_technical_indicators(df):
    if df.empty:
        return df

    delta = df['close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
    rs = gain / loss
    df['RSI'] = 100 - (100 / (1 + rs))

    exp1 = df['close'].ewm(span=12, adjust=False).mean()
    exp2 = df['close'].ewm(span=26, adjust=False).mean()
    df['MACD'] = exp1 - exp2
    df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()

    df['MA20'] = df['close'].rolling(window=20).mean()
    df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
    df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()

    return df

def create_technical_charts(df):
    if df.empty:
        return None, None, None

    fig1 = go.Figure()
    fig1.add_trace(go.Candlestick(
        x=df['timestamp'],
        open=df['open'],
        high=df['high'],
        low=df['low'],
        close=df['close'],
        name='Price'
    ))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
    fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')

    fig2 = go.Figure()
    fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
    fig2.add_hline(y=70, line_dash="dash", line_color="red")
    fig2.add_hline(y=30, line_dash="dash", line_color="green")
    fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')

    fig3 = go.Figure()
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
    fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')

    return fig1, fig2, fig3

# --- Prophet Forecasting Functions ---
def prepare_data_for_prophet(df):
    if df.empty:
        return pd.DataFrame(columns=["ds", "y"])
    df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
    return df_prophet[["ds", "y"]]

def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
    if df_prophet.empty:
        return pd.DataFrame(), "No data for Prophet."

    try:
        model = Prophet(
            daily_seasonality=daily_seasonality,
            weekly_seasonality=weekly_seasonality,
            yearly_seasonality=yearly_seasonality,
            seasonality_mode=seasonality_mode,
            changepoint_prior_scale=changepoint_prior_scale,
        )
        model.fit(df_prophet)
        future = model.make_future_dataframe(periods=periods, freq=freq)
        forecast = model.predict(future)
        return forecast, ""
    except Exception as e:
        return pd.DataFrame(), f"Forecast error: {e}"

def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
    if len(df_prophet) < 10:
        return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."

    full_forecast, err = prophet_forecast(
        df_prophet,
        forecast_steps,
        freq,
        daily_seasonality,
        weekly_seasonality,
        yearly_seasonality,
        seasonality_mode,
        changepoint_prior_scale,
    )
    if err:
        return pd.DataFrame(), err

    future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
    return future_only, ""

def create_forecast_plot(forecast_df):
    if forecast_df.empty:
        return go.Figure()

    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat"],
        mode="lines",
        name="Forecast",
        line=dict(color="blue", width=2)
    ))

    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_lower"],
        fill=None,
        mode="lines",
        line=dict(width=0),
        showlegend=True,
        name="Lower Bound"
    ))

    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_upper"],
        fill="tonexty",
        mode="lines",
        line=dict(width=0),
        name="Upper Bound"
    ))

    fig.update_layout(
        title="Price Forecast",
        xaxis_title="Time",
        yaxis_title="Price",
        hovermode="x unified",
        template="plotly_white",
    )
    return fig

# --- Model Training and Prediction ---
model = RandomForestClassifier(**RANDOM_FOREST_PARAMS)

def train_model(df):
    if df.empty:
        return
    df["target"] = (df["close"].pct_change() > 0.05).astype(int)
    features = df[["close", "volume"]].dropna()
    target = df["target"].dropna()
    if not features.empty and not target.empty:
        model.fit(features, target)
    else:
        print("Not enough data for model training.")

def predict_growth(latest_data):
    if not hasattr(model, 'estimators_') or len(model.estimators_) == 0:
        return [0]

    try:
        prediction = model.predict(latest_data.reshape(1, -1))
        return prediction
    except Exception as e:
        print(f"Prediction error: {e}")
        return [0]

# --- Main Prediction and Display Function ---
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""):
    df = pd.DataFrame()
    error_message = ""
    sentiment_score = 0

    try:
        if market_type == "Crypto":
            df = fetch_crypto_data(symbol, interval=interval)
        elif market_type == "Stock":
            df = fetch_stock_data(symbol, interval=interval)
        else:
            error_message = "Invalid market type selected."
            return None, None, None, None, None, "", error_message, 0

        if sentiment_keyword:
            sentiment_score = fetch_sentiment_data(sentiment_keyword)
    except Exception as e:
        error_message = f"Data Fetching Error: {e}"
        return None, None, None, None, None, "", error_message, 0

    if df.empty:
        error_message = "No data fetched."
        return None, None, None, None, None, "", error_message, 0

    df["timestamp"] = pd.to_datetime(df["timestamp"])
    numeric_cols = ["open", "high", "low", "close", "volume"]
    df[numeric_cols] = df[numeric_cols].astype(float)
    df = calculate_technical_indicators(df)

    df_prophet = prepare_data_for_prophet(df)
    freq = "h" if interval == "1h" or interval == "60min" else "d"
    forecast_df, prophet_error = prophet_wrapper(
        df_prophet,
        forecast_steps,
        freq,
        daily_seasonality,
        weekly_seasonality,
        yearly_seasonality,
        seasonality_mode,
        changepoint_prior_scale,
    )

    if prophet_error:
        error_message = f"Prophet Error: {prophet_error}"
        return None, None, None, None, None, "", error_message, sentiment_score

    forecast_plot = create_forecast_plot(forecast_df)
    tech_plot, rsi_plot, macd_plot = create_technical_charts(df)

    try:
        train_model(df.copy())
        if not df.empty:
            latest_data = df[["close", "volume"]].iloc[-1].values
            growth_prediction = predict_growth(latest_data)
            growth_label = "Yes" if growth_prediction[0] == 1 else "No"
        else:
            growth_label = "N/A: Insufficient Data"
    except Exception as e:
        error_message = f"Model Error: {e}"
        growth_label = "N/A"

    forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
    forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
    return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.Markdown("# Market Analysis and Prediction")

    with gr.Row():
        with gr.Column():
            market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
            symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTC-USD")
            interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
            forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=DEFAULT_FORECAST_STEPS, step=1)
            daily_box = gr.Checkbox(label="Daily Seasonality", value=DEFAULT_DAILY_SEASONALITY)
            weekly_box = gr.Checkbox(label="Weekly Seasonality", value=DEFAULT_WEEKLY_SEASONALITY)
            yearly_box = gr.Checkbox(label="Yearly Seasonality", value=DEFAULT_YEARLY_SEASONALITY)
            seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value=DEFAULT_SEASONALITY_MODE)
            changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=DEFAULT_CHANGEPOINT_PRIOR_SCALE)
            sentiment_keyword_txt = gr.Textbox(label="Sentiment Keyword (optional)")

        with gr.Column():
            forecast_plot = gr.Plot(label="Price Forecast")
            with gr.Row():
                tech_plot = gr.Plot(label="Technical Analysis")
                rsi_plot = gr.Plot(label="RSI Indicator")
            with gr.Row():
                macd_plot = gr.Plot(label="MACD")
            forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
            growth_label_output = gr.Label(label="Explosive Growth Prediction")
            sentiment_label_output = gr.Number(label="Sentiment Score")

    def update_symbol_choices(market_type):
        if market_type == "Crypto":
            return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTC-USD")
        elif market_type == "Stock":
            return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL")
        return gr.Dropdown(choices=[], value=None)
    market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])

    analyze_button = gr.Button("Analyze Market", variant="primary")
    analyze_button.click(
        fn=analyze_market,
        inputs=[
            market_type_dd,
            symbol_dd,
            interval_dd,
            forecast_steps_slider,
            daily_box,
            weekly_box,
            yearly_box,
            seasonality_mode_dd,
            changepoint_scale_slider,
            sentiment_keyword_txt,
        ],
        outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output, gr.Label(label="Error Message"), sentiment_label_output]
    )

if __name__ == "__main__":
    demo.launch()