File size: 14,645 Bytes
f70ed41 42e86be 1e2c87b f70ed41 42e86be 1e2c87b 42e86be f70ed41 1e2c87b 42e86be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.graph_objs as go
import requests
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob
import yfinance as yf
import re
# --- Constants ---
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD", "LTC-USD", "XRP-USD"]
STOCK_SYMBOLS = ["AAPL", "MSFT", "GOOGL", "AMZN"]
INTERVAL_OPTIONS = ["1h", "1d", "1wk"]
DEFAULT_FORECAST_STEPS = 24
DEFAULT_DAILY_SEASONALITY = True
DEFAULT_WEEKLY_SEASONALITY = True
DEFAULT_YEARLY_SEASONALITY = False
DEFAULT_SEASONALITY_MODE = "additive"
DEFAULT_CHANGEPOINT_PRIOR_SCALE = 0.05
RANDOM_FOREST_PARAMS = {
"n_estimators": 100,
"max_depth": 10,
"random_state": 42
}
# --- Data Fetching Functions ---
def fetch_crypto_data(symbol, interval="1h", limit=100):
try:
ticker = yf.Ticker(symbol)
if interval == "1h":
period = "1d"
df = ticker.history(period=period, interval="1h")
elif interval == "1d":
df = ticker.history(period="1y", interval=interval)
elif interval == "1wk":
df = ticker.history(period="5y", interval=interval)
else:
raise ValueError("Invalid interval for yfinance.")
if df.empty:
raise Exception("No data returned from yfinance.")
df.reset_index(inplace=True)
df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
return df.dropna()
except Exception as e:
raise Exception(f"Error fetching crypto data from yfinance: {e}")
def fetch_stock_data(symbol, interval="1d"):
try:
ticker = yf.Ticker(symbol)
df = ticker.history(period="1y", interval=interval)
if df.empty:
raise Exception("No data returned from yfinance.")
df.reset_index(inplace=True)
df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
return df.dropna()
except Exception as e:
raise Exception(f"Error fetching stock data from yfinance: {e}")
def fetch_sentiment_data(keyword):
try:
tweets = [
f"{keyword} is going to moon!",
f"I hate {keyword}, it's trash!",
f"{keyword} is amazing!"
]
sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets]
return sum(sentiments) / len(sentiments) if sentiments else 0
except Exception as e:
print(f"Sentiment analysis error: {e}")
return 0
# --- Technical Analysis Functions ---
def calculate_technical_indicators(df):
if df.empty:
return df
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
def create_technical_charts(df):
if df.empty:
return None, None, None
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
# --- Prophet Forecasting Functions ---
def prepare_data_for_prophet(df):
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
def create_forecast_plot(forecast_df):
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
)
return fig
# --- Model Training and Prediction ---
model = RandomForestClassifier(**RANDOM_FOREST_PARAMS)
def train_model(df):
if df.empty:
return
df["target"] = (df["close"].pct_change() > 0.05).astype(int)
features = df[["close", "volume"]].dropna()
target = df["target"].dropna()
if not features.empty and not target.empty:
model.fit(features, target)
else:
print("Not enough data for model training.")
def predict_growth(latest_data):
if not hasattr(model, 'estimators_') or len(model.estimators_) == 0:
return [0]
try:
prediction = model.predict(latest_data.reshape(1, -1))
return prediction
except Exception as e:
print(f"Prediction error: {e}")
return [0]
# --- Main Prediction and Display Function ---
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""):
df = pd.DataFrame()
error_message = ""
sentiment_score = 0
try:
if market_type == "Crypto":
df = fetch_crypto_data(symbol, interval=interval)
elif market_type == "Stock":
df = fetch_stock_data(symbol, interval=interval)
else:
error_message = "Invalid market type selected."
return None, None, None, None, None, "", error_message, 0
if sentiment_keyword:
sentiment_score = fetch_sentiment_data(sentiment_keyword)
except Exception as e:
error_message = f"Data Fetching Error: {e}"
return None, None, None, None, None, "", error_message, 0
if df.empty:
error_message = "No data fetched."
return None, None, None, None, None, "", error_message, 0
df["timestamp"] = pd.to_datetime(df["timestamp"])
numeric_cols = ["open", "high", "low", "close", "volume"]
df[numeric_cols] = df[numeric_cols].astype(float)
df = calculate_technical_indicators(df)
df_prophet = prepare_data_for_prophet(df)
freq = "h" if interval == "1h" or interval == "60min" else "d"
forecast_df, prophet_error = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if prophet_error:
error_message = f"Prophet Error: {prophet_error}"
return None, None, None, None, None, "", error_message, sentiment_score
forecast_plot = create_forecast_plot(forecast_df)
tech_plot, rsi_plot, macd_plot = create_technical_charts(df)
try:
train_model(df.copy())
if not df.empty:
latest_data = df[["close", "volume"]].iloc[-1].values
growth_prediction = predict_growth(latest_data)
growth_label = "Yes" if growth_prediction[0] == 1 else "No"
else:
growth_label = "N/A: Insufficient Data"
except Exception as e:
error_message = f"Model Error: {e}"
growth_label = "N/A"
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score
def chatbot_response(message, history):
market_type = "Crypto" # Default market type
symbol = "BTC-USD" # Default symbol
interval = "1h" # Default interval
forecast_steps = DEFAULT_FORECAST_STEPS
daily_seasonality = DEFAULT_DAILY_SEASONALITY
weekly_seasonality = DEFAULT_WEEKLY_SEASONALITY
yearly_seasonality = DEFAULT_YEARLY_SEASONALITY
seasonality_mode = DEFAULT_SEASONALITY_MODE
changepoint_prior_scale = DEFAULT_CHANGEPOINT_PRIOR_SCALE
sentiment_keyword = ""
# Simple keyword parsing - improve this for more robust parsing
message_lower = message.lower()
if "stock" in message_lower:
market_type = "Stock"
symbol = "AAPL" # Default stock symbol
elif "crypto" in message_lower:
market_type = "Crypto"
symbol = "BTC-USD" # Default crypto symbol
for crypto_sym in CRYPTO_SYMBOLS:
if crypto_sym.lower() in message_lower:
symbol = crypto_sym
market_type = "Crypto"
break
for stock_sym in STOCK_SYMBOLS:
if stock_sym.lower() in message_lower:
symbol = stock_sym
market_type = "Stock"
break
for intv in INTERVAL_OPTIONS:
if intv in message_lower:
interval = intv
break
forecast_steps_match = re.search(r'forecast\s*(\d+)\s*steps', message_lower)
if forecast_steps_match:
forecast_steps = int(forecast_steps_match.group(1))
sentiment_match = re.search(r'sentiment\s*(.+)', message_lower)
if sentiment_match:
sentiment_keyword = sentiment_match.group(1).strip()
plots, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label, error_message, sentiment_score = analyze_market(
market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword
)
response = ""
if error_message:
response += f"Error: {error_message}\n\n"
if plots and not error_message:
response += "Here is the price forecast plot.\n\n" # In a real chatbot, you might provide a link or embed the plot if possible.
else:
response += "Could not generate forecast plot.\n\n"
if tech_plot and rsi_plot and macd_plot and not error_message:
response += "Technical analysis plots (Bollinger Bands, RSI, MACD) are generated.\n\n" # Again, link or embed plots in a real chatbot
else:
response += "Could not generate technical analysis plots.\n\n"
if not error_message:
response += f"Explosive Growth Prediction: {growth_label}\n"
response += f"Sentiment Score (for keyword '{sentiment_keyword}'): {sentiment_score:.2f}\n"
if not forecast_df.empty:
# Summarize forecast data instead of displaying the full dataframe in text
forecast_summary = forecast_df.tail().to_string() # Just showing last few rows as summary
response += "\nForecast Data Summary (last few points):\n" + forecast_summary + "\n"
else:
response += "\nNo forecast data available.\n"
return response
with gr.ChatInterface(
chatbot_response,
title="Market Analysis Chatbot",
description="Ask me about crypto or stock market analysis. For example, try: 'Analyze crypto BTC-USD 1d forecast 30 steps sentiment Bitcoin' or 'Stock AAPL 1h analysis'.",
examples=[
"Analyze crypto ETH-USD 1h",
"Stock MSFT 1d forecast 10 steps",
"Crypto LTC-USD 1wk sentiment Litecoin",
"Analyze stock GOOGL",
"What about crypto XRP-USD?",
],
theme=gr.themes.Base()
) as demo:
demo.launch() |